Bibliography For William Gropp

[1] mat04:report

[5] alma03:mpibgl

[7] alma05:mpi-impl:bgl

[8] ala04:mpi:bgl
George Almási, Charles Archer, José G. Casta nos, John Gunnels, Chris

[9] agkks-sc99-fun3d

[12] bagh10

[13] baik02:cluster-middleware
[14] bak03:cluster01

[15] conf/icpp/BalajiBPTG07

[16] conf/ipps/BalajiBBSTG07
Pavan Balaji, Darius Buntinas, S. Balay, B. Smith, Rajeev Thakur, and William Gropp. Nonuniformly communicating noncontiguous data: A case study with PETSc and MPI. In *IPDPS* [3], pages 1–10.

[17] balaji-mpi-mill-11

[18] balaji-pmi-10

[19] 1612220

[20] DBLP:conf/pvm/BalajiBGT08
Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. Toward efficient support for multithreaded MPI communication. In Lastovetsky et al. [360], pages 120–129.

[21] PavanBalaji02012010
[22] balaji-mpidata-10

[23] DBLP:conf/pvm/BalajiCGTL08

[24] DBLP:journals/ife/BalajiCTGL09

[25] Balay97

[26] petsc-user-ref

[27] petsc-cse15

[28] petsc-user-ref-3-0

[29] PetscUsers

[31] alice-siamoo-98-preprint

[32] bgms00:petsc-chapt

[33] bala03:sourcebook:pdesoft

[34] barrymangroppsaltz89

[35] bdec-report

[36] besa89

[37] Berryman:1990:KMP
[38] DBLP:conf/sc/BhateleJGK11

[39] conf/ipps/BhateleJGWGK11

[40] 8955452

[43] BIENZ2019166

[44] bla03:cray-eval

[45] bw-in-vetter13
[46] boleygropp81

[47] Bolstad:1979:NAP

[48] applmath08

[49] bunt05:mpi-impl

[50] buntinas05:common_comm_subsys

[51] data_transfer2006

[52] nemesis-design-tr

[53] buntinas06:nemesis
Darius Buntinas, Guillaume Mercier, and William Gropp. Design and

[54] buntinas06:nemesis:shm

[55] bush00:petsc

[56] bus01:petsc-perf

[57] bg100:mpd-short

[58] bg100:mpi-mpd-tr

[59] bg100:mpd

[60] bg100:mpd-tr
Ralph Butler, William Gropp, and Ewing Lusk. Components and interfaces of a process management system for parallel programs. Technical

[61] butlergropplusk93

[62] byna08:_hidin_i_o_laten_with

[63] byna08:_paral_i_o_prefet_using

[64] byna03:mpi-impl

[65] byna06:mpi:datatypes

[66] XCCai_WDGropp_DEKeyes_MDTidriri_1994a

[67] caigroppkeyes91
[68] caigropp97

[69] caigroppkeyestidriri94

[70] Cai:1992:CSD

[71] Cai:1992:CRE

[74] CalhounOlsonSnirGropp:2015:FR_AMG

[75] conf/hpdc/CalhounSOG17
Jon Calhoun, Marc Snir, Luke N. Olson, and William D. Gropp. Towards a more complete understanding of SDC propagation. In H. Howie Huang,

[91] **ching-io-02**

[92] **ching-io-03**

[93] **ching04:paralle-io**

[94] **DBLP:journals/ijhpcn/ChingCLRG04**

[95] **pvmmpi99-totalview**

[96] **pvmmpi99-totalview-tr**

[98] **journals/pc/DangSG17**
[99] dgw02:wan-ftp

[100] dg02:wan-ftp

[101] CPE:CPE3758

[102] contextid-12

[104] Dongarra01022011

[105] **crpchandbook**

[106] **dozsa-threads-10**

[107] **gropp93**

[109] 10.1145/3330345.3330358

[111] **evans03:network**
[12] EVA03.soft

[13] falz05:mpi-impl

[14] falz07:mpi-debug

[15] 6702642

[16] nes06

[17] forsman95

[18] forsman95rpt

[19] ppsc95•225
 Kimmo Forsman, William Gropp, Lauri Kettunen, and David Levine.
Computational electromagnetics and parallel dense matrix computations.

[120] mpi-1-standard

[121] mpi-nexus-pc

[122] ppsc91*307

[123] FGS

[124] of03:sourcebook:pgmmodels

[125] icpp90-3*35

[126] alice-infrastructure

[127] frei99:num-soft
Lori A. Freitag, William Gropp, Paul D. Hovland, Lois C. McInnes, and

[128] gahvari10

[129] conf/ics/GahvariBSYJG11

[130] DBLP:conf/icpp/GahvariGJSY12

[131] conf/ipps/GahvariGJSY13

[132] Gahvari15-AMG-Dragonfly

[133] ppsc93*160

[134] galbreath:applio

[136] 10.1109/CLUSTER.2010.11

[137] conf/pvm/GoodellGZT11

[138] DBLP:journals/cacm/GopalakrishnanKSTGLSSB11

[139] gottbrath06:mpi:debugging

[140] Greengard88

[141] ppsc87*213
Leslie Greengard and William D. Gropp. A parallel version of the fast

[142] greengardgropp90

[143] Gropp86a

[144] Gropp88c

[145] Gropp88a

[155] GroppMore97

[157] 6636318
[158] **GROPP84A**

[159] **GROPP84**

[160] **GROPP85**

[162] **gkks99:perf-bounds**

[163] **gkks:cfd-hiperf-tr**

[164] **gkks:cfd-perf**

[165] **gkks:cfd-scal-perf00**

[166] **gkks:cfd-hiperf-art**
[167] gkks:cfd-perf-proc

[168] GSK00

[169] WDGropp_DEKeyes_1989b

[170] WDGropp_DEKeyes_1990a

[171] WDGropp_DEKeyes_1991a

[172] WDGropp_DEKeyes_1992c

[173] WDGropp_DEKeyes_1992a

[174] siamssc-92/128:gwd
[175] WDGropp_DEKeyes_JSMounts_1994a

[176] WDGropp_DEKeyes_MDTidriri_1995a

[178] gropp-odonnell84

[179] WDGropp_BFSmith_1994a

[180] Gropp87b

[181] gro90:par-comp

[182] gropp91:visual-artifacts
[183] GroppWilli93a

[184] gropp93:parallel

[185] groppscs93

[186] GroppWilli1995b

[187] gropp-siamoo-98

[188] gropp00:petsc-lessons

[189] DBLP:conf/cluster/Gropp01

[190] DBLP:conf/pvm/Gropp01

[191] gropp01:mpi-misc
William Gropp. Learning from the success of MPI. Technical Report

[200] gro04:mpi-pgming

[201] grop05:progmodels

[202] Grop07GridSummary

[203] 1612212

[205] mpi-success-12

[206] xpacc-cse15

[207] fpmpi

William Gropp and Andrew Lumsdaine. Parallel tools and environments:

[216] GroppWilli92a

[217] pvmmpi99-mpptest-tr

[218] gro03:beowulf:mpi2

[219] gro03:beowulf:mpi1

[220] gropp04:mpi-fault

[222] gropp-lusk-skjellum:using-mpi2nd

[223] UsingMPI3rd

[224] beowulflinux2nd

[26] gropp-lusk-thakur:usingmpi2

[27] DBLP:conf/pvm/GroppL02

[28] DBLP:conf/pvm/GroppL03

[29] sc13-specialissue

[31] gro04a:pario

[32] gro04:par-io;tr
William Gropp, Robert Ross, and Neill Miller. Providing efficient I/O

[233] gro88:par-cfd

[234] Gropp11012009

[235] gro05:mpi-rma-impl

[236] pmodels-mpi:15

[237] Gropp2019-EuroMPI17

[239] gropp-thesis

[240] gropp83

[241] groppLUMR87
William D. Gropp. Local uniform mesh refinement on parallel processors.

[244] gropp-nla87

[245] groppadapt88

[246] gropp-dyngrid89

[247] gropp91

[249] bfort-manual
[250] doctext-manual

[251] tohtml-manual

[252] groppdebug97

[253] gropp-mppm97

[254] gropppetsc97

[255] groppmaui97

[256] gro:mpi-datatypes:pvmmpi00

[257] gro00:mpi-impl

[258] gr01:mpi-lessons
William D. Gropp. Learning from the success of MPI. In Burkhard

William D. Gropp. MPI and hybrid programming models for petascale computing. In Lastovetsky et al. [360], pages 6–7.

William D. Gropp. Performance, portability, and dreams. In Anshu

[268] GROPP201998

[269] groppfoulser89

[270] Grop:BGMS:07

[271] ghs-pm-siamcse11

[273] groppkaper94

[274] groppkaper96
William D. Gropp, Hans Kaper, G. Leaf, D. Levine, V. Vinokur, and

35

[275] gropp00performance

[276] gkks00:fun3d

[277] gropp06:radtransport

[278] groppkeyes89

[279] groppkeyes90

[282] ppsc89*295

[283] groppkeyes90b

[284] groppkeyes91a

[285] groppkeyes91

[286] groppkeyes-asym92

[287] groppkeyes92

[288] groppkeyesmcinnestidrir97

[289] DBLP:conf/pvm/GroppKRTT08

[290] gropp06:ppsurvey

[291] groppplusk94

William D. Gropp and Ewing L. Lusk. A taxonomy of programming

[301] GroppMcInnesSmith95

[302] GroppWilli1995a

[303] groppmore97rpt

[304] groppschultz89

[305] groppschultz90

[306] SLES-manual

[307] KSP-manual

[308] Chameleon-manual
[309] groppsmith95

[312] groppsmith90

[313] grop06:mpi:threads

[314] DBLP:conf/pvm/GroppT07

[315] guo2013applications

[316] GuoGropp10

[317] Guo01022014
Guo14072015

gropp-hedstrom83

herbin87

mpi-mpi-hybrid-programming

mpi-sharedmem-12

journals/topc/HoeflerDTBBGU15

Hoefler:2011:PMS:2063348.2063356

hoefer-model-10
Torsten Hoefler, William Gropp, Rajeev Thakur, and Jesper Träff. Toward performance models of MPI implementations for understanding application scaling issues. In Rainer Keller, Edgar Gabriel, Michael Resch,

[326] natureMMA19

[327] 8778229

[328] IBEID202063

[329] DBLP:conf/sc/2014pmbs

[330] jia04:mpi-impl
[331] jiang04:mpi-impl

[332] jia04:mpi-impl;ib

[333] kale2011weighted

[334] kale-mpi-10

[335] conf/iwomp/KaleG15

[336] conf/pvm/KaleRG14

[337] ksfglb00:mpi-collective

[346] DEKeyes_WDGropp_1989a

[347] DEKeyes_WDGropp_1991a

[348] DEKeyes_WDGropp_AEcoder_1989a

[349] scalesv1-03

[350] scalesv2-04

[351] nsf-soft10

[360] DBLP:conf/pvm/2008

[361] DBLP:conf/pvm/LathamGRT07

[362] LevGroForKet99:petsc-coral

[363] li03:pmetcdf

[364] liu03:mpich2-infiniband

[365] liu03:mpich2-infiniband-ipdps
[366] lusk03:beowulf:pgmme

[367] conf/hpdc/LuuWGRCHPBY15

[368] mellor2010teaching

[369] mpi-2-standard

[370] ppsc89*386

[371] NAP21886

[372] NAP25199

[373] NAP18972

[376] ong-lusk-gropp:SUT

[377] ong-lusk-gropp:SUT-tr

[378] conf/pvm/PenaCDBTG13

[379] DBLP:conf/pvm/PervezGKPTG07

[380] gopal10

[381] pervez06:formal:mpi
Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev

[382] conf/pvm/PrabhuG15

[384] 10.1007/978-3-030-17872-7_4

[385] conf/ipps/RandlesKHGK13

[386] conf/pvm/RashtiGBAG11

[387] ros03:mpidatatype

[388] ross04:mpi-impl:tr
R. Ross, N. Miller, and W. D. Gropp. Implementing fast and reusable

[389] 1612222

[390] ross:mpi-io:atomic

[391] rfgkst00:mpichg-qos-sc

[392] rfgkst00:mpichg-qos

[393] sack-exascale-10

[396] 1577927
G. Santhanaraman, P. Balaji, K. Gopalakrishnan, R. Thakur, W. Gropp, and D. K. Panda. Natively supporting true one-sided communication in

[397] jms04:grid

[398] GPW05-Report

[399] DBLP:conf/pvm/SharmaVGKTG08

[400] shen:accel

[401] 5725240

[402] SkjellumAn1994a

[404] cfd2030tr

[413] thakur03:mpi-coll

[414] thak03:sourcebook:mpiio

[415] conf/aPcsac/ThakurG07

[416] DBLP:conf/pvm/ThakurG07
Rajeev Thakur and William Gropp. Test suite for evaluating performance of MPI implementations that support MPI_THREAD_MULTIPLE. In Cappello et al. [78], pages 46–55. Outstanding paper (1 of 4).

[417] thakur09:MPIthreads

[418] ThakurGroLus96

[419] thakur:abstract-tr

[420] thakur:evaluation
[421] thakur:evaluation-tr

[422] ROMIOUsers

[423] thakurgroppluskdatasieving98

[425] thakurfrontiers99

[426] thak99b

[427] tgl02:mpiio

[428] ree04:mpi-io

[429] tha04:mpi-impl
Rajeev Thakur, William Gropp, and Brian Toonen. Minimizing synchronization overhead in the implementation of MPI one-sided communication.

[430] thak04:mpi-impl:rma

[431] thak05:mpi-impl:rma

[432] thak05:mpi-impl:rma:preprint

[433] thakur:astrophysics

[434] thakurluskroggerio97

[435] thakurluskrogger-datatype98:sc98

[436] thakurluskrogger-datatype98
[437] thakurluskgropp98

[438] thak04:mpi-impl:coll

[439] thak05:mpi-impl:coll

[440] 8661203

[441] 1679706

[442] toas01:bnr-design

[443] DBLP:conf/pvm/TraffGT07

[444] traff2010

[445] DBLP:conf/pvm/TraffRSBTG08
Jesper Larsson Träff, Andreas Ripke, Christian Siebert, Pavan Balaji, Rajeev Thakur, and William Gropp. A simple, pipelined algorithm for
large, irregular all-gather problems. In Lastovetsky et al. [360], pages 84–93.

[454] zaki-lusk-gropp-swider99

[455] zaki-lusk-gropp-swider99-techrpt

[456] 6808175

[457] conf/ccgrid/ZhaoBG15

[458] conf/ispdc/ZhaoBG16

[459] 6844416

[460] zha013-am-mpi

[461] adaptive-rma-12
Xin Zhao, Gopalakrishnan Santhanaraman, and William Gropp. Adaptive strategy for one-sided communication in MPICH2. In Jesper Träff, Siegfried Benkner, and Jack Dongarra, editors, *Recent Advances in the
