Bibliography For William Gropp

[1] mat04:report

[7] alma05:mpi-impl:bgl

[8] ala04:mpi:bgl
George Almási, Charles Archer, José G. Casta nos, John Gunnels, Chris

[9] agkks-sc99-fun3d

[12] bagh10

[13] baik02:cluster-middleware
[14] **bak03:cluster01**

[15] **conf/icpp/BalajiBPTG07**

[16] **conf/ipps/BalajiBBSTG07**
Pavan Balaji, Darius Buntinas, S. Balay, B. Smith, Rajeev Thakur, and William Gropp. Nonuniformly communicating noncontiguous data: A case study with PETSc and MPI. In *IPDPS* [3], pages 1–10.

[17] **balaji-mpi-mill-11**

[18] **balaji-pmi-10**

[19] **1612220**

[20] **DBLP:conf/pvm/BalajiBGGT08**
Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. Toward efficient support for multithreaded MPI communication. In Lastovetsky et al. [353], pages 120–129.

[21] **PavanBalaji02012010**

Satish Balay, William Gropp, Lois Curfman McInnes, and Barry Smith.
A microkernel design for component-based numerical software systems.
In Michael Henderson, Christopher Anderson, and Stephen L. Lyons, editors,
Object Oriented Methods for Interoperable Scientific and Engineering

[31] alice-siamoo-98-preprint
Satish Balay, William Gropp, Lois Curfman McInnes, and Barry Smith.
A microkernel design for component-based numerical software systems.
Technical Report ANL/MCS-P727-0998, Mathematics and Computer Science Division,
Argonne National Laboratory, September 1998.

[32] bgms00:petsc-chapt
Satish Balay, William Gropp, Lois Curfman McInnes, and Barry F. Smith.
Software for the scalable solution of PDEs. Technical Report ANL/MCS-P834-0700,
Mathematics and Computer Science Division, Argonne National Laboratory,
July 2000.

[33] bala03:sourcebook:pdesoft
Satish Balay, William Gropp, Lois Curfman McInnes, and Barry F. Smith.
Software for the scalable solution of partial differential equations. In Jack
Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda
Torczon, and Andy White, editors, Sourcebook of Parallel Computing,

[34] barrymangroppsaltz89
H. S. Barryman, William D. Gropp, and J. Saltz. Krylov methods and

[35] bdec-report
BDEC pathways to convergence: Toward a shaping strategy for a future
software and data ecosystem for scientific inquiry. Technical Report ICL-
UT-17-08, University of Tennessee, 11 2017.

[36] besa89
preconditioned with incompletely factored matrices on the CM-2. Technical Report 89-54, NASA Langley Research Center, ICASE, Hampton,

[37] Berryman:1990:KMP
[38] DBLP:conf/sc/BhateleJGK11

[39] conf/ipps/BhateleJGWGK11

[40] doi:10.1137/15M1026341

[41] Bienz:2018:IPM:3236367.3236368

[42] bla03:cray-eval

[43] bw-in-vetter13

[44] boleygropp81

J. H. Bolstad, T. F. Chan, W. M. Coughran, Jr., W. D. Gropp, E. H.

[46] applmath08

[47] bunt05:mpi-impl

[48] buntinas05:common_comm_subsys

[49] data_transfer2006

[50] nemesis-design-tr

[51] buntinas06:nemesis

Heterogeneous Processing, pages 77–83, Los Alamitos, California, 1993. IEEE.

[60] byna08:_hidin_i_o laten_with

[61] byna08:_paral_i_o_prefet_using

[62] byna03:mpi-impl

[63] byna06:mpi:datatypes

[64] XCCai_WDGropp_DEKeyes_MDTidriri_1994a

[65] caigroppkeyes91

[66] caigropp97
[67] caigroppkeyestidriri94

[70] Cai:1994:CSD

[72] CalhounOlsonSnirGropp:2015:FR_AMG

[73] conf/hpdc/CalhounSOG17

[74] FranckCappello11012009
Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and

[75] **cappello14-resilience**

[76] **DBLP:conf/pvm/2007**

[77] **carns2012case**

[78] 10.1109/SC.Companion.2012.19

[79] **chan08-bg-fft**

[80] **chan02:scalable-log**

[81] **chan08:slog2**

[82] **PPoPP2006**
Ernie Chan, William Gropp, Rajeev Thakur, and Robert van de Geijn.

[83] cgk91:dd-transport

[84] DBLP:conf/iwomp/2011

[85] chen2012decoupled

[86] conf/trustcom/ChenCYSTG16

[87] conf/ipps/ChenSTRG11

[88] chin03a:mpi-io

[89] ching-io-02

[99] CPE:CPE3758

[100] contextid-12

[102] Dongarra01022011

[103] crpchandbook
[104] dozsa-threads-10

[105] gropp93

[108] evans03:network

[109] EVA03.soft

[110] falz05:mpi-impl

I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal,

[119] **ppsc91•307**

[120] **FGS**

[121] **of03:sourcebook:pgmmodels**

[122] **icpp90•3•35**

[123] **alice-infrastructure**

[124] **frei99:num-soft**

[125] **gahvari10**

[126] **conf/ics/GahvariBSYJG11**

David Goodell, Pavan Balaji, Darius Buntinas, Gabor Dozsa, William

[134] conf/pvm/GoodellGZT11

[135] DBLP:journals/cacm/GopalakrishnanKSTGLSSB11

[136] gottbrath06:mpi:debugging

[137] Greengard88

[138] ppsc87*213

[139] greengardgropp90

[140] Gropp86a
[141] Gropp88c

[142] Gropp88a

[152] GroppMore97

[154] 6636318

[155] GROPP84A

[156] GROPP84

[157] GROPP85

[159] gkks99:perf-bounds

[160] gkks:cfd-hiperf-tr

[161] gkks:cfd-perf

[162] gkks:cfd-scal-perf00

[163] gkks:cfd-hiperf-art

[164] gkks:cfd-perf-proc

[165] GSK00
[166] WDGropp_DEKeyes_1989b

[167] WDGropp_DEKeyes_1990a

[168] WDGropp_DEKeyes_1991a

[169] WDGropp_DEKeyes_1992c

[170] WDGropp_DEKeyes_1992a

[171] siamssc-92/128:gwd

[172] WDGropp_DEKeyes_JSMounts_1994a

[173] WDGropp_DEKeyes_MDTidriri_1995a

[175] gropp-odonnell84

[176] WDGropp_BFSmith_1994a

[177] Gropp87b

[178] gro90:par-comp

[179] gropp91:visual-artifacts

[180] GroppWilli1993a

[181] gropp93:parallel

[182] groppscs93
[183] GroppWill1995b

[184] gropp-siamoo-98

[185] gropp00:petsc-lessons

[186] DBLP:conf/cluster/Gropp01

[187] DBLP:conf/pvm/Gropp01

[188] gropp01:mpi-misc

[189] gropp02:mpi-generic

[190] DBLP:conf/pvm/Gropp02

[191] gro03:sourcebook:poisson
William Gropp. The 2-d Poisson problem. In Jack Dongarra, Ian Foster,

[192] **gro03:mpitrends**

[193] **gro03:sourcebook:**

[194] **gro03:beowulf:use**

[195] **qcdoc03:trends**

[196] **grop04:par-soft**

[197] **grop04:mpi-pgming**

[198] **grop05:progmodels**
[200] 1612212

[202] mpi-success-12

[203] xpacc-cse15

[204] fpmpi

[205] Grop07Grid

[206] UsingAdvancedMPI

[207] conf/pvm/GroppHTT11
William Gropp, Torsten Hoefler, Rajeev Thakur, and Jesper Larsson Träff. Performance expectations and guidelines for MPI derived datatypes.

[209] gkmt-nks00

[210] gkmt-nks-98-preprint

[211] gkmt-nks-98

[212] gropp06:_paral_tools_envir

[214] pvmmpi199-mpptest-tr
[215] gro03:beowulf:mpi2

[216] gro03:beowulf:mpi1

[217] gropp04:mpi-fault

[219] gropp-lusk-skjellum:using-mpi2nd

[220] UsingMPI3rd

[221] beowulflinux2nd

[222] gropp-swider-lusk99

[223] gropp-lusk-thakur:usingmpi2

[224] DBLP:conf/pvm/GroppL02
William Gropp and Ewing L. Lusk. MPI on the grid. In Dieter Kranzlmüller, Peter Kacsuk, Jack Dongarra, and Jens Volkert, editors, Re-

[233] models-mpi:15

[235] gropp-thesis

[236] gropp83

[237] groppLUMR87

[240] gropp-nla87

[241] groppadapt88
William D. Gropp. Adaptive methods for hyperbolic problems on local

[242] **gropp-dyngrid89**

[243] **gropp91**

[244] **Gropp:1992:PCD**

[245] **bfort-manual**

[246] **doctext-manual**

[247] **tohtml-manual**

[248] **gropdebug97**

[249] **gropp-mppm97**
[250] groppetsc97

[251] groppmaui97

[252] gro:mpi-datatypes:pvmmpi00

[253] gro00:mpi-impl

[254] gro01:mpi-lessons

[255] gro02:mpi-impl:generic

[256] gro04:par-issues

[257] DBLP:conf/pvm/Gropp04
William D. Gropp. MPI and high productivity programming. In Dieter Kranzlmüller, Peter Kacsuk, and Jack Dongarra, editors, *Recent Ad-

[258] gro04-bk:par-issues

[259] DBLP:conf/pvm/Gropp08
William D. Gropp. MPI and hybrid programming models for petascale computing. In Lastovetsky et al. [353], pages 6–7.

[260] 1608633

[261] conf/ics/Gropp11

[264] GROPP2019

[265] groppfoulser89

[266] Grop:BGMS:07
William D. Gropp, Wolfgang Frings, Marc-André Hermanns, Ed Jedlicka,

[267] ghs-pm-siamcse11

[269] groppkaper94

[270] groppkaper96

[271] gropp00performance

[272] gkks00:fun3d

[273] gropp06:radtransport
[274] groppkeyes89

[275] groppkeyes90

[278] ppsc89*295

[279] groppkeyes90b

[280] groppkeyes91a

[281] groppkeyes91

[282] groppkeyes-asympt92
[283] groppkeyes92

[284] groppkeyesmcinnestidriri97

[285] DBLP:conf/pvm/GroppKRTT08

[286] gropp06:ppsurvey

[287] groplusk94

[288] mpich-install

[289] mpich-user

[290] groplusk_pvvmmpi97

[291] gropluskpvmmpi97
[292] pvmpi99-mpptest

[293] grop02:mpi-pvm

[294] gro04:mpi

[295] groppluskieper94

[296] groppluskpmppm95

[297] GroppMcInnesSmith95

[298] GroppWilli1995a

[299] groppmore97rpt

[300] groppschultz89

[301] groppschultz90

[302] SLES-manual

[303] KSP-manual

[304] Chameleon-manual

[305] groppsmith95

[308] groppsmith90
[309] grop06:mpi:threads
William D. Gropp and Rajeev Thakur. Issues in developing a thread-safe
MPI implementation. In Bernd Mohr, Jesper Larsson Träff, Joachim Wor-
ringen, and Jack Dongarra, editors, Recent Advances in Parallel Virtual
Machine and Message Passing Interface, number LNCS 4192 in Springer
Lecture Notes in Computer Science, pages 12–21. Springer, September
2006.

[310] DBLP:conf/pvm/GroppT07
William D. Gropp and Rajeev Thakur. Revealing the performance of MPI
RMA implementations. In Cappello et al. [76], pages 272–280.

[311] guo2013applications
D. Guo and W. Gropp. Applications of the streamed storage format
for sparse matrix operations. International Journal of High Performance

[312] GuoGropp10
Dahai Guo and William Gropp. Optimizing sparse data structures for
matrix-vector multiply. International Journal of High Performance Com-

[313] Guo01022014
Dahai Guo and William Gropp. Applications of the streamed storage
format for sparse matrix operations. International Journal of High Per-

[314] Guo14072015
Dahai Guo, William Gropp, and Luke N Olson. A hybrid format for better
performance of sparse matrix-vector multiplication on a GPU. Interna-
tional Journal of High Performance Computing Applications, 30(1):103–
120, 2016.

[315] gropp-hedstrom83
G. W. Hedstrom and William D. Gropp. The computer as an aid in
the asymptotic estimation of integrals. Technical Report UCRL-87297,
Lawrence Livermore National Laboratory, August 1983.

[316] herbin87
R. H. Herbin, W. D. Gropp, D. E. Keyes, and V. Sonnad. A domain de-
composition technique on a loosely coupled array of processors. Technical

[317] mpi-mpi-hybrid-programming
T. Hoeffer, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur. MPI + MPI: a new hybrid approach
to parallel programming with MPI plus shared memory. Journal of Com-
[318] mpi-sharedmem-12

[319] journals/topc/HoeflerDTBBGU15

[321] hoefler-model-10

[322] DBLP:conf/sc/2014pmbs

[323] jia04:mpi-impl

[324] jiang04:mpi-impl
Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda, William Gropp, and Rajeev Thakur. High performance MPI-2 one-sided...

[325] jia04:mpi-impl;ib

[326] kale2011weighted

[327] kale-mpi-10

[328] conf/iwomp/KaleG15

[329] conf/pvm/KaleRG14

[330] ksfglb00:mpi-collective

[331] kar02:mpi-impl

[339] DEKeyes_WDGropp_1989a

[340] DEKeyes_WDGropp_1991a

[341] DEKeyes_WDGropp_AEcder_1989a

[342] scalesv1-03

[343] scalesv2-04

[344] nsf-soft10

[347] keyesgropp90

[349] keyesgropp92

[350] Keyes01022013

[351] KeyesMcInnesWoodwardEtAl12

[354] DBLP:conf/pvm/LathamGRT07

[355] LevGroForKet99:petsc-coral

[356] li03:pnetcdf

[357] liu03:mpich2-infiniband

[358] liu03:mpich2-infiniband-ipdps

[359] lusk03:beowulf:pgmming

[369] ong-lusk-gropp:SUT

[370] ong-lusk-gropp:SUT-tr

[371] conf/pvm/PenaCDBTG13

[372] DBLP:conf/pvm/PervezGKPTG07

[373] gopal10

[374] pervez06:formal:mpi
[375] conf/pvm/PrabhuG15
Tarun Prabhu and William Gropp. DAME: A runtime-compiled engine for
derived datatypes. In Jack J. Dongarra, Alexandre Denis, Brice Goglin,
Emmanuel Jeannot, and Guillaume Mercier, editors, EuroMPI, pages 4:1–
doi:10.1177/1094342017695444
Tarun Prabhu and William Gropp. DAME: Runtime-compilation for data

[377] conf/ipps/RandlesKHGK13
Amanda Peters Randles, Vivek Kale, Jeff Hammond, William Gropp, and
Efthimios Kaxiras. Performance analysis of the lattice Boltzmann model
beyond Navier-Stokes. In IPDPS, pages 1063–1074. IEEE Computer So-
ciety, 2013.

[378] conf/pvm/RashtiGBAG11
Mohammad J. Rashti, Jonathan Green, Pavan Balaji, Ahmad Afsahi, and
In Yiannis Cotronis, Anthony Danalis, Dimitrios S. Nikolopoulos, and
Jack Dongarra, editors, *Recent Advances in the Message Passing Interface
- 18th European MPI Users’ Group Meeting, EuroMPI 2011, Santorini,

[379] ros03:mpidatatype
R. Ross, N. Miller, and W. D. Gropp. Implementing fast and reusable
datatype processing. In Jack Dongarra, Domenico Laforenza, and Sal-
vatore Orlando, editors, *Recent Advances in Parallel Virtual Machine
and Message Passing Interface*, number LNCS2840 in Lecture Notes in
Computer Science, pages 404–413. Springer Verlag, 2003. 10th European
PVM/MPI User’s Group Meeting, Venice, Italy.

[380] ross04:mpi-impl:tr
R. Ross, N. Miller, and W. D. Gropp. Implementing fast and reusable
datatype processing. Technical Report ANL/MCS-P1068-0703, Mathe-
matics and Computer Science Division, Argonne National Laboratory,
July 2003. Appeared in Euro PVMMP03.

[381] 1612222
Robert Ross, Robert Latham, William Gropp, Ewing Lusk, and Rajeev
Thakur. Processing MPI datatypes outside MPI. In *Proceedings of the
16th European PVM/MPI Users’ Group Meeting on Recent Advances in
Parallel Virtual Machine and Message Passing Interface*, pages 42–53,

[382] ross:mpi-io:atomic
Robert Ross, Robert Latham, William Gropp, Rajeev Thakur, and Brian

[383] rfgkst00:mpichg-qos-sc

[384] rfgkst00:mpichg-qos

[385] sack-exascale-10

[388] 1577927

[389] jms04:grid

[390] DBLP:conf/pvm/SharmaVGKTG08
[391] shen:acceln

[392] 5725240

[393] SkjellumAn1994a

[395] cfd2030tr

[396] slotnick2014enabling

[397] BFSmith_PEBjorstad_WDGropp_1996a

[398] smithgropp96

[399] DBLP:conf/IEEEpact/TeixeiraPG17
Thiago Santos Faria Xavier Teixeira, David Padua, and William Gropp.

[401] tg00:io-chapt

[402] tha03:mpicollective

[403] thakur03:mpi-coll

[404] thak03:sourcebook:mpiio

[405] conf/aPcsac/ThakurG07

[406] DBLP:conf/pvm/ThakurG07
Rajeev Thakur and William Gropp. Test suite for evaluating performance of MPI implementations that support MPI_THREAD_MULTIPLE. In Cappello et al. [76], pages 46–55.

[407] thakur09:MPIthreads
Rajeev Thakur and William Gropp. Test suite for evaluating performance

[408] **ThakurGroLus96**

[409] **thakur:abstract-tr**

[410] **thakur:evaluation**

[411] **thakur:evaluation-tr**

[412] **ROMIOUsers**

[413] **thakurgroplusk-datasieving98**

[414] **thakur-gropp-lusk-mpiio**
[415] thakurfrontiers99

[416] thak99b

[417] tgl02:mpiio

[418] ree04:mpi-io

[419] tha04:mpi-impl

[420] thak04:mpi-impl;rma

[421] thak05:mpi-impl;rma

[422] thak05:mpi-impl;rma:preprint
[423] thakur:astrophysics

[424] thakurluskgropp-io97

[425] thakurluskgropp-datatype98:sc98

[426] thakurluskgropp-datatype98

[427] thakurluskgropp98

[428] thak04:mpi-impl:coll

[429] thak05:mpi-impl:coll

[430] 1679706

[431] toas01:bnr-design
Brian Toonen, David Ashton, Ewing Lusk, Ian Foster, William Gropp,

[432] DBLP:conf/pvm/TraffGT07
Jesper Larsson Träff, William Gropp, and Rajeev Thakur. Self-consistent MPI performance requirements. In Cappello et al. [76], pages 36–45.

[433] traff2010

[434] DBLP:conf/pvm/TraffRSBTG08

[435] JesperLarssonTraff02012010

[436] DBLP:conf/pvm/VakkalankaDGKTG08
Sarvani S. Vakkalanka, Michael Delisi, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev Thakur, and William Gropp. Implementing efficient dynamic formal verification methods for MPI programs. In Lastovetsky et al. [353], pages 248–256.

[437] vin01:mpi-impl

[438] deflatedgmress13

[439] wagg01:linux-petsc

