Bibliography For William Gropp

[1] mat04:report

[5] alm03:mpibgl

[7] alma05:mpi-impl:bgl

[8] ala04:mpi:bgl
George Almási, Charles Archer, José G. Casta nos, John Gunnels, Chris

[9] agkks-sc99-fun3d

[12] bagh10

[13] baik02:cluster-middleware
[14] bak03:cluster01

[15] conf/icpp/BalajiBPTG07

[16] conf/ipps/BalajiBBSTG07
Pavan Balaji, Darius Buntinas, S. Balay, B. Smith, Rajeev Thakur, and William Gropp. Nonuniformly communicating noncontiguous data: A case study with PETSc and MPI. In *IPDPS* [3], pages 1–10.

[17] balaji-mpi-mill-11

[18] balaji-pmi-10

[19] 1612220

[20] DBLP:conf/pvm/BalajiBGGT08
Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. Toward efficient support for multithreaded MPI communication. In Lastovetsky et al. [356], pages 120–129.

[21] PavanBalaji02012010
[22] balaji-mpidata-10

[23] DBLP:conf/pvm/BalajiCGTL08

[24] DBLP:journals/ife/BalajiCTGL09

[25] Balay97

[26] petsc-user-ref

[27] petsc-cse15

[28] petsc-user-ref-3-0

[29] PETScUsers

[31] alice-siamoo-98-preprint

[32] bgms00:petsc-chapt

[33] bala03:sourcebook:pdesoft

[34] barrymangroppsaltz89

[35] bdec-report

[36] besa89

[37] Berryman:1990:KMP
[38] DBLP:conf/sc/BhateleJGK11

[39] conf/ipps/BhateleJGWGK11

[40] doi:10.1137/15M1026341

[41] Bienz:2018:IPM:3236367.3236368

[42] BIENZ2019166

[43] bla03:cray-eval

[44] bw-in-vetter13

[45] boleygropp81

[47] applmath08

[48] bunt05:mpi-impl

[49] buntinas05:common_comm_subsys

[50] data_transfer2006

[51] nemesis-design-tr

[52] buntinas06:nemesis

[53] buntinas06:nemesis:shm

[54] bush00:petsc

[55] bus01:petsc-perf

[56] bgl00:mpd-short

[57] bgl00:mpi-mpd-tr

[58] bgl00:mpd

[59] bgl00:mpd-tr

14 X-C Cai, William D. Gropp, David E. Keyes, R. G. Melvin, and D. P. Young. Parallel Newton-Krylov-Schwarz algorithms for the transonic full

[68] caigroppkeyestidriri94

[70] Cai:1992:CRE

[71] Cai:1994:CSD

[73] CalhounOlsonSnirGropp:2015:FR_AMG

[74] conf/hpdc/CalhounSG17

[83] PPoPP2006

[84] cgk91:dd-transport

[85] DBLP:conf/iwomp/2011

[86] chen2012decoupled

[87] conf/trustcom/ChenCYSTG16

[88] conf/ipps/ChenSTRG11

[89] chin03a:mpi-io

[90] ching-io-02
[91] ching-io-03

[92] ching04:paralle-io

[93] DBLP:journals/ijhpcn/ChingCLRG04

[94] pvmmpi99-totalview

[95] pvmmpi99-totalview-tr

[97] journals/pc/DangSG17

[98] dgw02:wan-ftp

[99] dg02:wan-ftp

[100] CPE:CPE3758

[101] contextid-12

[103] Dongarra01022011

[104] crpchandbook

[12] falz07:mpi-debug

[13] 6702642

[14] nes06

[15] forsm95

[16] forsm95rpt

[17] ppsc95•225

[18] mpi-1-standard

[19] mpi-nexus-pc
I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal,

[120] ppsc91*307

[121] FGS

[122] of03:sourcebook:pgmmodels

[123] icpp90-3*35

[124] alice-infrastructure

[125] frei99:num-soft

[126] gahvari10

[127] conf/ics/GahvariBSYJG11

David Goodell, Pavan Balaji, Darius Buntinas, Gabor Dozsa, William

[135] conf/pvm/GoodellGZT11

[136] DBLP:journals/cacm/GopalakrishnanKSTGLSSB11

[137] gottbrath06:mpi:debugging

[138] Greengard88

[139] ppsc87*213

[140] greengardgropp90

[141] Gropp86a
[142] Gropp88c

[143] Gropp88a

[153] GroppMore97

[155] 6636318

[156] GROPP84A

[157] GROPP84

[158] GROPP85

[167] WDGropp_DEKeyes_1989b

[168] WDGropp.DEKeyes_1990a

[169] WDGropp.DEKeyes_1991a

[170] WDGropp.DEKeyes_1992c

[171] WDGropp.DEKeyes_1992a

[172] siamssc-92/128:gwd

[173] WDGropp.DEKeyes_JSMounts_1994a

[174] WDGropp.DEKeyes_MDTidriri_1995a

[176] gropp-odonnell84

[177] WDGropp_BFSmith_1994a

[178] Gropp87b

[179] gro90:par-comp

[180] gropp91:visual-artifacts

[181] GroppWilli1993a

[182] gropp93:parallel

[183] groppscs93
[184] GroppWill11995b

[185] gropp-siamoo-98

[186] gropp00:petsc-lessons

[187] DBLP:conf/cluster/Gropp01

[188] DBLP:conf/pvm/Gropp01

[189] gropp01:mpi-misc

[190] gropp02:mpi-generic

[191] DBLP:conf/pvm/Gropp02

[192] gro03:sourcebook:poisson
William Gropp. The 2-d Poisson problem. In Jack Dongarra, Ian Foster,

[193] gro03:mpitrends

[194] gro03:sourcebook:

[195] gro03:beowulf:use

[196] qcdoc03:trends

[197] grop04:par-soft

[198] gro04:mpi-pgming

[199] grop05:progmodels
[200] Gropp07GridSummary

[201] 1612212

[203] mpi-success-12

[204] xpacc-cse15

[205] fpmpi

[206] Gropp07Grid

[207] UsingAdvancedMPI

[208] conf/pvm/GroppHTT11
William Gropp, Torsten Hoefler, Rajeev Thakur, and Jesper Larsson Träff. Performance expectations and guidelines for MPI derived datatypes.

27

[210] `gkmt-nks00`

[211] `gkmt-nks-98-preprint`

[212] `gkmt-nks-98`

[213] `gropp06:_paral_tools_envir`

[214] `GroppWilli1992a`

[215] `pvmmpi99-mpptest-tr`

[226] DBLP:conf/pvm/GroppL03

[227] sc13-specialissue

[229] gro04a:pario

[230] gro04:par-io;tr

[231] gro88:par-cfd

[232] WilliamGropp11012009

[233] gro05:mpi-rma-impl
William Gropp and Rajeev Thakur. An evaluation of implementation

[234] **pmodes-mpi:15**

[235] **GRPP2019-EuroMPI17**

[236] **Gropp:1980:TMM**

[237] **gropp-thesis**

[238] **gropp83**

[239] **groppLUMB87**

[242] **gropp-nla87**
[243] groppadapt88

[244] gropp-dyngrid89

[245] gropp91

[247] bfort-manual

[248] doctext-manual

[249] tohtml-manual

[250] groppdebug97

[251] gropp-mppm97
[252] groppetsc97

[253] groppmaui97

[254] gro:mpi-datatypes:pvmmpi00

[255] gro00:mpi-impl

[256] gr01:mpi-lessons

[257] gro02:mpi-impl:generic

[258] gro04:par-issues

[259] DBLP:conf/pvm/Gropp04
William D. Gropp. MPI and high productivity programming. In Dieter Kranzlmüller, Peter Kacsuk, and Jack Dongarra, editors, *Recent Ad-

[260] gro04-bk:par-issues

[261] DBLP:conf/pvm/Gropp08
William D. Gropp. MPI and hybrid programming models for petascale computing. In Lastovetsky et al. [356], pages 6–7.

[262] 1608633

[263] conf/ics/Gropp11

[266] GROPP201998

[267] groppfoulser89

[268] Grop:BGMS:07
William D. Gropp, Wolfgang Frings, Marc-André Hermanns, Ed Jedlicka,

[269] ghs-pm-siamcse11

[271] groppkaper94

[272] groppkaper96

[273] gropp00performance

[274] gkks00:fun3d

[275] gropp06:radtransport
[276] groppkeyes89

[277] groppkeyes90

[280] ppsc89*295

[281] groppkeyes90b

[282] groppkeyes91a

[283] groppkeyes91

[284] groppkeyes-asympt92
[285] **groppkeyes92**

[286] **groppkeyesmcinnestidriri97**

[287] **DBLP:conf/pvm/GroppKRTT08**

[288] **gropp06:ppsurvey**

[289] **gropplusk94**

[290] **mpich-install**

[291] **mpich-user**

[292] **groppluskpvmmpi97**

[293] **groppluskpvmmpi97**
[294] pvmmpi99-mpptest

[295] gro02:mpi-pvm

[296] gro04:mpi

[297] gropluskpieper94

[298] gropluskppm95

[299] GroppMcInnesSmith95

[300] GroppWilli1995a

[301] groppmore97rpt

[302] groppschultz89

[303] groppschultz90

[304] SLES-manual

[305] KSP-manual

[306] Chameleon-manual

[307] groppsmith95

[310] groppsmith90
[311] `grop06:mpi:threads`

[312] `DBLP:conf/pvm/GroppT07`

[313] `guo2013applications`

[314] `GuoGropp10`

[315] `Guo01022014`

[316] `Guo14072015`

[317] `gropp-hedstrom83`

[318] `herbin87`

[319] `mpi-mpi-hybrid-programming`
[320] mpi-sharedmem-12

[321] journals/topc/HoeflerDTBBGU15

[323] hoefler-model-10

[324] natureMMA19
[325] DBLP:conf/sc/2014pmbs

[326] jia04:mpi-impl

[327] jiang04:mpi-impl

[328] jia04:mpi-impl;ib

[329] kale2011weighted

[330] kale-mpi-10

[331] conf/iwomp/KaleG15

[332] conf/pvm/KaleRG14

[333] ksfglb00:mpi-collective

[334] kar02:mpi-impl

[335] kdSFGB00:mpi-nga

[336] kaushik08-tensor

[337] kend06:pde

[338] kettunenforsman93
International University, Department of Electrical Engineering and Computing Science, December 1993.

[339] kettunen94

[340] kettunenforsmanlevinegropp94

[341] KEYES85

[342] DEKeyes_WDGropp_1989a

[343] DEKeyes_WDGropp_1991a

[344] DEKeyes_WDGropp_AEceder_1989a

[345] scalesv1-03

[346] scalesv2-04
David Keyes, Philip Colella, Thom H. Dunning, and William D. Gropp. A
science-based case for large-scale simulation, volume 2, September 2004.
DRAFT, Office of Science, U.S. Department of Energy.

[347] nsf-soft10
David Keyes and Valerie Taylor. NSF-ACCI task force on software for
science and engineering, December 2010.

David E. Keyes and William D. Gropp. A comparison of domain de-
composition techniques for elliptic partial differential equations and their
parallel implementation. SIAM Journal on Scientific and Statistical Com-
the Second Conference on Parallel Processing for Scientific Computing (C.

David E. Keyes and William D. Gropp. Domain decomposition with local
mesh refinement. Technical Report YALEU/DCS/RR-726, Yale Univer-
sity, August 1989.

[350] keyesgropp90
David E. Keyes and William D. Gropp. Domain-decomposable precon-
ditioners for second-order upwind discretizations of multicomponent sys-
ence Division, Argonne National Laboratory, November 1990.

[351] Keyes:1990:DDT
David E. Keyes and William D. Gropp. Domain decomposition techniques
for the parallel solution of nonsymmetric systems of elliptic boundary
value problems. Applied Numerical Mathematics: Transactions of IMACS,

[352] keyesgropp92
David E. Keyes and William D. Gropp. Domain decomposition as a mech-
anism for using asymptotic methods. Technical Report MCS-P322-0892,
Mathematics and Computer Science Division, Argonne National Labora-

[353] Keyes01022013
David E Keyes, Lois C McInnes, Carol Woodward, William Gropp, Eric
Myra, Michael Pernice, John Bell, Jed Brown, Alain Clo, Jeffrey Con-
nors, Emil Constantinescu, Don Estep, Kate Evans, Charbel Farhat, Am-
mar Hakim, Glenn Hammond, Glen Hansen, Judith Hill, Tobin Isaac,
Xiangmin Jiao, Kirk Jordan, Dinesh Kaushik, Efthimios Kaxiras, Alice
Koniges, Kihwan Lee, Aaron Lott, Qiming Lu, John Magerlein, Reed
Maxwell, Michael McCourt, Miriam Mehl, Roger Pawlowski, Amanda P
Randles, Daniel Reynolds, Beatrice Rivière, Ulrich Rüde, Tim Scheibe,
John Shadid, Brendan Sheehan, Mark Shephard, Andrew Siegel, Barry

[354] KeyesMcInnesWoodwardEtAl12

[357] DBLP:conf/pvm/LathamGRT07

[358] LevGroForKet99:petsc-coral

[359] li03:pmnetcdf
[360] liu03:mpich2-infiniband

[361] liu03:mpich2-infiniband-ipdps

[362] lusk03:beowulf:pgmming

[363] conf/hpdc/LuuWGRCHPBY15

[364] mellor2010teaching

[365] mpi-2-standard

[366] ppsc89*386

[367] NAP21886
National Academies of Sciences, Engineering, and Medicine. Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science

[368] NAP25199

[369] NAP18972

[372] ong-lusk-gropp:SUT

[373] ong-lusk-gropp:SUT-tr

[374] conf/pvm/PervezGKPTG07

[375] DBLP:conf/pvm/PervezGKPTG07
Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby, Robert Palmer, Rajeev Thakur, and William Gropp. Practical model-checking
method for verifying correctness of MPI programs. In Cappello et al. [77], pages 344–353.

[376] gopal10

[377] pervez06:formal:mpi

[378] conf/pvm/PrabhuG15

[380] conf/ipps/RandlesKHGK13

[381] conf/pvm/RashtiGBAG11

[382] ros03:mpidatatype
R. Ross, N. Miller, and W. D. Gropp. Implementing fast and reusable datatype processing. In Jack Dongarra, Domenico Laforenza, and Salvatore Orlando, editors, *Recent Advances in Parallel Virtual Machine...

[383] ross04:mpi-impl:tr

[384] 1612222

[385] ross:mpi-io:atomic

[386] rfgkst00:mpichg-qos-sc

[387] rfgkst00:mpichg-qos

[388] sack-exascale-10

Rajeev Thakur and William Gropp. Test suite for evaluating performance of MPI implementations that support MPI_THREAD_MULTIPLE. In Cappello et al. [77], pages 46–55.

[415] thakur:evaluation-tr

[416] ROMIOUsers

[417] thakurgroplusk-datasieving98

[418] thakurgropp-lusk-mpiio

[419] thakurfrontiers99

[420] thak99b

[421] tgl02:mpiio

[422] ree04:mpi-io

[423] tha04:mpi-impl
Rajeev Thakur, William Gropp, and Brian Toonen. Minimizing synchronization overhead in the implementation of MPI one-sided communication.

[424] thak04:mpi-impl:rma

[425] thak05:mpi-impl:rma

[426] thak05:mpi-impl:rma:preprint

[427] thakur:astrophysics

[428] thakurlusk gropp-io97

[429] thakurlusk gropp-datatype98:sc98

[430] thakurlusk gropp-datatype98
[431] thakurluskgropp98

[432] thak04:mpi-impl:coll

[433] thak05:mpi-impl:coll

[434] 1679706

[435] tooas01:bnr-design

[436] DBLP:conf/pvm/TraffGT07
Jesper Larsson Träff, William Gropp, and Rajeev Thakur. Self-consistent MPI performance requirements. In Cappello et al. [77], pages 36–45.

[437] traff2010

[438] DBLP:conf/pvm/TraffRSBTG08

[439] JesperLarssonTraff02012010
Jesper Larsson Träff, Andreas Ripke, Christian Siebert, Pavan Balaji, Rajeev Thakur, and William Gropp. A pipelined algorithm for large,

[440] DBLP:conf/pvm/VakkalankaDGKTG08
Sarvani S. Vakkalanka, Michael Delisi, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev Thakur, and William Gropp. Implementing efficient dynamic formal verification methods for MPI programs. In Lastovetsky et al. [356], pages 248–256.

[441] vinkat:mpi-impl

[442] deflatedgmress13

[443] wagg01:linux-petsc

[444] SC00-CD-ROM*50

[446] 1598125

[447] zaki-lusk-gropp-swider99
Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward

[448] zaki-lusk-gropp-swider99-techrpt

[449] 6808175

[450] conf/ccgrid/ZhaoBG15

[451] conf/ispdc/ZhaoBG16

[452] 6844416

[453] zhaol3-am-mpi

[454] adaptive-rma-12

[455] 1612262

[456] zima:hpp104