Bibliography For William Gropp

[1] mat04:report

[5] alm03:mpibgl

[7] alma05:mpi-impl:bgl

[8] ala04:mpi:bgl
George Almási, Charles Archer, José G. Casta nos, John Gunnels, Chris

[9] agkks-sc99-fun3d

[12] baik02:cluster-middleware

[13] bak03:cluster01

[14] conf/icpp/BalajiBPTG07

[15] conf/ipps/BalajiBBSTG07
Pavan Balaji, Darius Buntinas, S. Balay, B. Smith, Rajeev Thakur, and William Gropp. Nonuniformly communicating noncontiguous data: A case study with PETSc and MPI. In IPDPS [3], pages 1–10.
[16] balaji-mpi-mill-11
Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Torsten
Hoefler, Sameer Kumar, Ewing Lusk, Rajeev Thakur, and Jesper Larsson
Träff. MPI on millions of cores. Parallel Processing Letters, 21(1):45–60,
2011.

[17] balaji-pmi-10
Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Jayesh Kr-
ishna, Ewing Lusk, and Rajeev Thakur. PMI: A scalable parallel process-
management interface for extreme-scale systems. In Rainer Keller, Edgar
Gabriel, Michael Resch, and Jack Dongarra, editors, Recent Advances in
the Message Passing Interface, volume 6305 of Lecture Notes in Computer

[18] 1612220
Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Sameer
Kumar, Ewing Lusk, Rajeev Thakur, and Jesper Larsson Träff. MPI
on a million processors. In Proceedings of the 16th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine
Springer-Verlag.

[19] DBLP:conf/pvm/BalajiBGGT08
Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Ra-
jeev Thakur. Toward efficient support for multithreaded MPI commu-
nication. In Lastovetsky et al. [342], pages 120–129.

[20] PavanBalaji02012010
Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Ra-
jeev Thakur. Fine-grained multithreading support for hybrid threaded
MPI programming. International Journal of High Performance Comput-

[21] balaji-mpidata-10
Pavan Balaji, Anthony Chan, William Gropp, Rajeev Thakur, and Ew-
ing Lusk. The importance of non-data-communication overheads in
MPI. International Journal of High Performance Computing Applications,

[22] DBLP:conf/pvm/BalajiCGTL08
Pavan Balaji, Anthony Chan, William Gropp, Rajeev Thakur, and Ew-
ing L. Lusk. Non-data-communication overheads in MPI: Analysis on Blue
Gene/P. In Lastovetsky et al. [342], pages 13–22.

[23] DBLP:journals/ife/BalajiCTGL09
Pavan Balaji, Anthony Chan, Rajeev Thakur, William Gropp, and Ew-
ing L. Lusk. Toward message passing for a million processes: character-
izing MPI on a massive scale Blue Gene/P. Computer Science - R&D,
[24] **Balay97**

[25] **petsc-user-ref**

[26] **petsc-cse15**

[27] **petsc-user-ref-3-0**

[28] **PETScUsers**

[29] **alice-siamoo-98**

[31] **bgms00:petsc-chapt**
Satish Balay, William Gropp, Lois Curfman McInnes, and Barry F. Smith.

[32] bala03:sourcebook:pdesoft

[33] barymangroppsaltz89

[34] besa89

[36] DBLP:conf/sc/BhateleJGK11

[37] conf/ipps/BhateleJGWGK11

[38] doi:10.1137/15M1026341
[39] **bla03:cray-eval**

[40] **bw-in-vetter13**

[41] **boleygropp81**

[42] **bolstad:1979:NAP**

[43] **applmath08**

[44] **bunt05:mpi-impl**

[45] **buntinas05:common_comm_subsys**
[46] data_transfer2006

[47] nemesis-design-tr

[48] buntinas06:nemesis

[49] buntinas06:nemesis:shm

[50] bush00:petsc

[51] bus01:petsc-perf

[52] bgl00:mpd-short

[53] bgl00:mpi-mpd-tr

[54] bgl00:mpd

[55] bgl00:mpd-tr

[56] butlergropplusk93

[57] byna08:_hidin_i_o_laten_with

[58] byna08:_paral_i_o_prefet_using

[59] byna03:mpi-impl

[60] byna06:mpi:datatypes
Surendra Byna, Xian-He Sun, Rajeev Thakur, and William D. Gropp. Automatic memory optimization for improving MPI derived datatype performance. In Bernd Mohr, Jesper Larsson Träff, Joachim Worrigen, and Jack Dongarra, editors, Recent Advances in Parallel Virtual Machine and

[61] XCCai_WDGropp_DEKeyes_MDTidriri_1994a

[62] caigroppkeyes91

[63] caigropp97

[64] caigroppkeyestidriri94

[65] Cai:1992:CSD

[68] CalhounOlsonSnirGropp:2015:FR_AMG

[69] FranckCappello11012009

[70] cappello14-resilience

[72] carnets2012case

[73] 10.1109/SC.Companion.2012.19

[74] chan08-bg-fft

[75] chan02:scalable-log
[76] chan08:slog2

[77] PPoPP2006

[78] cgk91:dd-transport

[80] chen2012decoupled

[81] conf/ipps/ChenSTRG11

[82] chin03a:mpi-io

[83] chin-02

[301x89]
[84] ching-io-03

[85] ching04:parallel-io

[86] DBLP:journals/ijhpcn/ChingCLRG04

[87] pvmmpi99-totalview

[88] pvmmpi99-totalview-tr

[90] dgw02:wan-ftp

[91] dg02:wan-ftp

[92] CPE:CPE3758
James Dinan, Pavan Balaji, Darius Buntinas, David Goodell, William

[93] contextid-12

[95] Dongarra01022011

[96] crpchandbook

[97] dozsa-threads-10

[98] gropp93

[99] Eller:2016:SNP:3014904.3014928

[101] evans03:network

[102] EVA03.soft

[103] falz05:mpi-impl

[104] falz07:mpi-debug
[105] 6702642

[106] nes06

[107] forsm95

[108] forsm95rpt

[109] ppsc95*225

[110] mpi-1-standard

[111] mpi-nexus-pc

[112] ppsc91*307
I. Foster, W. Gropp, and R. Stevens. Parallel scalability of the spectral transform method. In Jack Dongarra, Ken Kennedy, Paul Messina,

[113] FGS

[114] of03:sourcebook:pgmmodels

[115] icpp90-3*35

[116] alice-infrastructure

[117] frei99:num-soft

[118] gahvari10

[119] conf/ics/GahvariBSYJG11

[120] DBLP:conf/icpp/GahvariGJSY12
[121] conf/ipps/GahvariGJSY13

[122] Gahvari15-AMG-Dragonfly

[123] ppsc93*160

[124] galbreath:applio

[125] Geist:1996:MEM

[126] 10.1109/CLUSTER.2010.11

[127] conf/pvm/GoodellGZT11
David Goodell, William Gropp, Xin Zhao, and Rajeev Thakur. Scalable

[128] DBLP:journals/cacm/GopalakrishnanKSTGLSSB11

[129] gottbrath06:mpi:debugging

[130] Greengard88

[131] ppsc87*213

[132] greengardgropp90

[133] Gropp86a

[134] Gropp88c
[135] Gropp88a

W. Gropp and E. Lusk. A high-performance MPI implementation on a

[143] **Gropp:1997:SMC**

[144] **Gropp:1996:HPI**

[145] **GroppMore97**

[146] **Gropp:1994:SEP**

[147] **6636318**

[148] **GROPP84A**

[149] **GROPP84**

[150] **GROPP85**

[152] gkks99:perf-bounds

[153] gkks:cfd-hiperf-tr

[154] gkks:cfd-perf

[155] gkks:cfd-scal-perf00

[156] gkks:cfd-hiperf-art

[157] gkks:cfd-perf-proc

[158] GSKSK00

[159] WDDEFropp_DKEyeyes_1989b
[160] WDGropp_DEKeyes_1990a

[161] WDGropp_DEKeyes_1991a

[162] WDGropp_DEKeyes_1992c

[163] WDGropp_DEKeyes_1992a

[164] siamssc-92/128:gwd

[165] WDGropp_DEKeyes_JSMounts_1994a

[166] WDGropp_DEKeyes_MDTidriri_1995a

[168] gropp-odonnell84

[177] gropp-siamoo-98

[178] gropp00:petsc-lessons

[179] DBLP:conf/cluster/Gropp01

[180] DBLP:conf/pvm/Gropp01

[181] gropp01:mpi-misc

[182] gropp02:mpi-generic

[183] DBLP:conf/pvm/Gropp02

[184] gro03:sourcebook:poisson
[185] **gro03:mpitrends**

[186] **gro03:sourcebook:**

[187] **gro03:beowulf:use**

[188] **qcdoc03:trends**

[189] **grop04:par-soft**

[190] **grop04:mpi-pgmimg**

[191] **grop05:progmodels**

[192] **Grop07GridSummary**

[193] 1612212

[195] mpi-success-12

[196] xpacc-cse15

[197] fpmpi

[198] Grop07Grid

[199] UsingAdvancedMPI

[200] conf/pvm/GroppHTT11
William Gropp, Torsten Hoefer, Rajeev Thakur, and Jesper Larsson Träff. Performance expectations and guidelines for MPI derived datatypes. In Yiannis Cotorinis, Anthony Danalis, Dimitrios S. Nikolopoulos, and Jack Dongarra, editors, Recent Advances in the Message Passing Interface - 18th European MPI Users’ Group Meeting, EuroMPI 2011, Santorini,

[202] gkmt-nks00

[203] gkmt-nks-98-preprint

[204] gkmt-nks-98

[205] gropp06:_paral_tools_envir

[206] GroppWilli92a

[207] pvmmpi99-mpptest-tr

[208] gro03:beowulf:mpi2
William Gropp and Ewing Lusk. Advanced topics in MPI programming.

[209] **gro03:beowulf:mpi1**

[210] **gropp04:mpi-fault**

[211] **Gropp:1994:UMP**

[212] **gropp-lusk-skjellum:using-mpi2nd**

[213] **UsingMPI3rd**

[214] **beowulf-linux2nd**

[215] **gropp-swider-lusk99**

[216] **gropp-lusk-thakur:usingmpi2**

[217] **DBLP:conf/pvm/GroppL02**
[218] DBLP:conf/pvm/GroppL03

[219] sc13-specialissue

[221] gro04a:pario

[222] gro04:par-io;tr

[223] gro88:par-cfd

[224] WilliamGropp11012009

[225] gro05:mpi-rma-impl

[226] pmodels-mpi:15

[228] gropp-thesis

[229] gropp83

[230] groppLUMR87

[233] gropp-nla87

[234] groppadapt88
[235] **gropp-dyngrid89**

[236] **gropp91**

[238] **bfort-manual**

[239] **doctext-manual**

[240] **tohtml-manual**

[241] **groppdebug97**

[242] **gropp-mppm97**

[243] **gropppetsc97**
[244] groppmai97

[245] gro:mpi-datatypes:pvmmpi00

[246] gro00:mpi-impl

[247] gr01:mpi-lessons

[248] grop02:mpi-impl:generic

[249] gro04:par-issues

[250] DBLP:conf/pvm/Gropp04

[251] gro04-bk:par-issues
William D. Gropp. Issues in accurate and reliable use of parallel computing

[252] **DBLP:conf/pvm/Gropp08**
William D. Gropp. MPI and hybrid programming models for petascale computing. In Lastovetsky et al. [342], pages 6–7.

[253] **1608633**

[254] **conf/ics/Gropp11**

[255] **groppfoulser89**

[256] **Gropp:BGMS:07**

[257] **ghs-pm-siamcse11**

[259] **groppkaper94**
[260] groppkaper96

[261] gropp00performance

[262] gkks00:fun3d

[263] gropp06:radtransport

[264] groppkeyes89

[265] groppkeyes90

[268] ppsc89*295
William D. Gropp and David E. Keyes. Parallel domain decomposition with local mesh refinement. In Danny C. Sorensen, Jack Dongarra, Paul

[269] *groppkeyes90b*

[270] *groppkeyes91a*

[271] *groppkeyes91*

[272] *groppkeyes-asympt92*

[273] *groppkeyes92*

[274] *groppkeyesmcinnestidri97*

[275] DBLP:conf/pvm/GroppKR07

[276] *gropp06:ppsurvey*

[277] *gropplusk94*

[278] **mpich-install**

[279] **mpich-user**

[280] **gropplusk_pvmmpi97**

[281] **groppluskpvmmpi97**

[282] **pvmmpi99-mpptest**

[283] **grop02:mpi-pvm**

[284] **gro04:mpi**

[285] **groppluskpieper94**
[286] gropppluskmppm95

[287] GroppMcInnesSmith95

[288] GroppWilli1995a

[289] groppmore97rpt

[290] groppschultz89

[291] groppschultz90

[292] SLES-manual

[293] KSP-manual

[294] Chameleon-manual
William D. Gropp and Barry Smith. *Users Manual for the Chameleon*

[295] groppsmith95

[298] groppsmith90

[299] gropp06:mpi:threads

[300] DBLP:conf/pvm/GroppT07

[301] guo2013applications

[302] GuoGropp10
[303] Guo10222014

[304] Guo14072015

[305] gropp-hedstrom83

[306] herbin87

[307] mpi-mpi-hybrid-programming

[308] mpi-sharedmem-12

[309] journals/topc/HoeflerDTBBGU15

[310] hoefler-model-10
[311] DBLP:conf/sc/2014pmbs

[312] jia04:mpi-impl

[313] jiang04:mpi-impl

[314] jia04:mpi-impl;ib

[315] kale2011weighted

[316] kale-mpi-10

[317] conf/iwomp/KaleG15

[318] conf/pvm/KaleRG14

[319] ksfglb00:mpi-collective

[320] kar02:mpi-impl

[321] kdSFGLB00:mpi-ngi

[322] kaushik08-tensor

[323] kend06:pde

[324] kettunenforsman93
International University, Department of Electrical Engineering and Computing Science, December 1993.

[325] kettunen94

[326] kettunenforsmanlevinegropp94

[327] KEYES85

[328] DEKeyes_WDGropp_1989a

[329] DEKeyes_WDGropp_1991a

[330] DEKeyes_WDGropp_AEccder_1989a

[331] scalesv1-03

[332] scalesv2-04
David Keyes, Philip Colella, Thom H. Dunning, and William D. Gropp. A

[333] nsf-soft10

[336] keyesgropp90

[338] keyesgropp92

[339] Keyes01022013
David E Keyes, Lois C McInnes, Carol Woodward, William Gropp, Eric Myra, Michael Pernice, John Bell, Jed Brown, Alain Clo, Jeffrey Connors, Emil Constantinescu, Don Estep, Kate Evans, Charbel Farhat, Anmar Hakim, Glenn Hammond, Glen Hansen, Judith Hill, Tobin Isaac, Xiangmin Jiao, Kirk Jordan, Dinesh Kaushik, Efthimios Kaxiras, Alice Koniges, Kihwan Lee, Aaron Lott, Qiming Lu, John Magerlein, Reed Maxwell, Michael McCourt, Miriam Mehl, Roger Pawlowski, Amanda P Randles, Daniel Reynolds, Beatrice Riviére, Ulrich Rüde, Tim Scheibe, John Shadid, Brendan Sheehan, Mark Shephard, Andrew Siegel, Barry

[340] **KeyesMcInnesWoodwardEtAl12**

[342] **DBLP:conf/pvm/2008**

[343] **DBLP:conf/pvm/LathamGRT07**

[344] **LevGroForKet99:petsc-coral**

[345] **li03:pnetcdf**
[346] liu03:mpich2-infiniband

[347] liu03:mpich2-infiniband-ipdps

[348] lusk03:beowulf:pgmming

[349] conf/hpdc/LuuWGRCHPBY15

[350] mellor2010teaching

[351] mpi-2-standard

[352] ppsc89*386

[353] NAP21886
National Academies of Sciences, Engineering, and Medicine. Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science

[354] NAP18972

[357] ong-lusk-gropp:SUT

[358] ong-lusk-gropp:SUT-tr

[359] conf/pvm/PervezGKPTG13

[360] DBLP:conf/pvm/PervezGKPTG07

[361] gopal10
Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev

[362] pervez06:formal:mpi

[363] conf/pvm/PrabhuG15

[364] conf/ipps/RandlesKHGK13

[365] conf/pvm/RashtiGBAG11

[366] ros03:mpidatatype

[367] ross04:mpi-impl:tr
[368] 1612222

[369] ross:mpi-io:atomic

[370] rfgktst00:mpichg-qos-sc

[371] rfgktst00:mpichg-qos

[372] sack-exascale-10

[375] 1577927
[376] jms04:grid

[377] DBLP:conf/pvm/SharmaVGKTG08
Subodh Sharma, Sarvani S. Vakkalanka, Ganesh Gopalakrishnan,
Robert M. Kirby, Rajeev Thakur, and William Gropp. A formal approach
to detect functionally irrelevant barriers in MPI programs. In Lastovetsky
et al. [342], pages 265–273.

[378] shen:accel
Baifei Shen, Yuelin Li, Karoly Nemeth, Hairong Shang, Yong chul Chae,
Robert Soliday, Robert Crowell, Edward Frank, William Gropp, and John
Cary. Electron injection by a nanowire in the bubble regime. Physics of

[379] 5725240
2011.

[380] SkjellumAn1994a
Anthony Skjellum, Ewing Lusk, and William Gropp. Early applications
in the message passing interface (MPI). Technical report, Department of
Computer Science, Mississippi State University, June 1994.

Anthony Skjellum, Ewing Lusk, and William Gropp. Early applications
in the Message-Passing Interface (MPI). International Journal of Supercomputer

[382] cfd2030tr
Jeffrey Slotnick, Abdollah Khodadoust, Juan Alonso, David Darmofal,
William Gropp, Elizabeth Lurie, and Dimitri Mavriplis. CFD Vision 2030
study: A path to revolutionary computational aerosciences. Technical

[383] slotnick2014enabling
Jeffrey P Slotnick, Abdollah Khodadoust, Juan J Alonso, David L Darmo
fal, William D Gropp, Elizabeth A Lurie, Dimitri J Mavriplis, and Venkat
Venkatakrishnan. Enabling the environmentally clean air transportation
of the future: a vision of computational fluid dynamics in 2030. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and

[384] BFSmith_PEBjorstad_WDGropp_1996a
[385] smithgropp96

[387] tg00:io-chapt

[388] tha03:mpicollective

[389] thakur03:mpi-col1

[390] thak03:sourcebook:mpiio

[391] conf/aPcsac/ThakurG07

[392] DBLP:conf/pvm/ThakurG07
Rajeev Thakur and William Gropp. Test suite for evaluating performance of MPI implementations that support MPI_THREAD_MULTIPLE. In Cappello et al. [71], pages 46–55.

[393] thakur09:MPIthreads
Rajeev Thakur and William Gropp. Test suite for evaluating performance

[394] **ThakurGroLus96**

[395] **thakur:abstract-tr**

[396] **thakur:evaluation**

[397] **thakur:evaluation-tr**

[398] **ROMIOUsers**

[399] **thakurgroplusk-datasieving98**

[400] **thakur-gropp-lusk-mpiio**
[401] thakurfrontiers99

[402] thak99b

[403] tgl02:mpiio

[404] ree04:mpi-io

[405] tha04:mpi-impl

[406] thak04:mpi-impl;rma

[407] thak05:mpi-impl;rma

[408] thak05:mpi-impl;rma:preprint
[409] **thakur:astrophysics**

[410] **thakurluskgropp-io97**

[411] **thakurluskgropp-datatype98:sc98**

[412] **thakurluskgropp-datatype98**

[413] **thakurluskgropp98**

[414] **thak04:mpi-impl:coll**

[415] **thak05:mpi-impl:coll**

[416] **1679706**

[417] **toas01:bnr-design**
Brian Toonen, David Ashton, Ewing Lusk, Ian Foster, William Gropp,

[418] DBLP:conf/pvm/TraffGT07

[419] traff2010

[420] DBLP:conf/pvm/TraffRSBTG08

[421] JesperLarssonTraff02012010

[422] DBLP:conf/pvm/VakkalankaDGKTG08
Sarvani S. Vakkalanka, Michael Delisi, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev Thakur, and William Gropp. Implementing efficient dynamic formal verification methods for MPI programs. In Lastovetsky et al. [342], pages 248–256.

[423] vin01:mpi-impl

[424] deflatedgmress13

[425] wagg01:linux-petsc

[434] Xin Zhao, D. Buntinas, J. Zoummevo, J. Dinan, D. Goodell, P. Balaji,

[435] adaptive-rma-12

[436] 1612262

[437] zima:hpp104