Bibliography For William Gropp

[1] mat04:report

[5] alm03:mpibgl

[7] alma05:mpi-impl:bgl

[8] ala04:mpi:bgl
George Almási, Charles Archer, José G. Casta nos, John Gunnels, Chris

[9] agkks-sc99-fun3d

[12] baik02:cluster-middleware

[13] bak03:cluster01

[14] conf/icpp/BalajiBPTG07

[15] conf/ipps/BalajiBBSTG07
Pavan Balaji, Darius Buntinas, S. Balay, B. Smith, Rajeev Thakur, and William Gropp. Nonuniformly communicating noncontiguous data: A case study with PETSc and MPI. In IPDPS [3], pages 1–10.
[16] balaji-mpi-mill-11

[17] balaji-pmi-10

[18] 1612220

[19] DBLP:conf/pvm/BalajiBGGT08
Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. Toward efficient support for multithreaded MPI communication. In Lastovetsky et al. [336], pages 120–129.

[20] PavanBalaji02012010

[21] balaji-mpidata-10

[22] DBLP:conf/pvm/BalajiCGTL08

[23] DBLP:journals/ife/BalajiCTGL09
[24] Balay97
S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient man-

[25] petsc-user-ref
Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter
Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D.
Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes,
Karl Rupp, Barry F. Smith, Stefano Zampini, and Hong Zhang. PETSc
users manual. Technical Report ANL-95/11 - Revision 3.6, Argonne Na-
tional Laboratory, 2015.

[26] petsc-cse15
Satish Balay, Jed Brown, William Gropp, Matthew Knepley, Lois Curf-
man McInnes, Barry F. Smith, and Hong Zhang. An overview of PETSc.
In *2015 SIAM Conference on Computational Science and Engineering*,
page 274, Salt Lake City, Utah, March 2015. SIAM. Poster in Minisym-
posterium 103: Frameworks, Algorithms, and Scalable Technologies for
Mathematics (FASTMath).

[27] petsc-user-ref-3-0
Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Di-
nesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F.
Smith, and Hong Zhang. PETSc users manual. Technical Report ANL-
95/11 - Revision 3.0.0, Argonne National Laboratory, 2008.

[28] PETScUsers
Satish Balay, William Gropp, Lois Curfman McInnes, and Barry Smith.
PETSc 2.0 Users Manual. Mathematics and Computer Science Division,
Argonne National Laboratory, 1997. ANL-95/11.

[29] alice-siamoo-98
Satish Balay, William Gropp, Lois Curfman McInnes, and Barry Smith.
A microkernel design for component-based numerical software systems.
In Michael Henderson, Christopher Anderson, and Stephen L. Lyons, edi-
tors, *Object Oriented Methods for Interoperable Scientific and Engineer-

Satish Balay, William Gropp, Lois Curfman McInnes, and Barry Smith.
A microkernel design for component-based numerical software systems.
Technical Report ANL/MCS-P727-0998, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory, September 1998.

[31] bgms00:petsc-chapt
Satish Balay, William Gropp, Lois Curfman McInnes, and Barry F. Smith.

[32] bala03:sourcebook:pdesoft

[33] barmangroppsaltz89

[34] besa89

[36] DBLP:conf/sc/BhateleJGK11

[37] conf/ipps/BhateleJGWGK11

[38] bld03:cray-eval
[39] bw-in-vetter13

[40] boleygropp81

[41] Bolstad:1979:NAP

[42] applmath08

[43] bunt05:mpi-impl

[44] buntinas05:common_comm_subsys

[45] data_transfer2006

[53] bg100:mpd

[54] bg100:mpd-tr

[55] butlergroplusk93

[56] byna08:_hidin_i_o laten_with

[57] byna08:_paral_i_o prefet using

[58] byna03:mpi-impl

[59] byna06:mpi:datatypes

[60] XCai_WDGropp_DEKeyes_MDTidriri_1994a
[61] caigroppkeyes91

[62] caigropp97

[63] caigroppkeyestidriri94

[64] Cai:1992:CSD

[65] Cai:1992:CRE

[67] CalhounOlsonSnirGropp:2015:FR_AMG

[68] FranckCappello11012009

Ernie Chan, William Gropp, Rajeev Thakur, and Robert van de Geijjn. Collective communication on architectures that support simultaneous

[77] cgk91:dd-transport

[79] chen2012decoupled

[80] conf/ipps/ChenSTRG11

[81] chin03a:mpi-io

[82] ching-io-02

[83] ching-io-03

[84] ching04:paralle-io
Avery Ching, Alok Choudhary, Wei keng Liao, Robert Ross, and William

[85] DBLP:journals/ijhpcn/ChingCLR04

[86] pvmmpi99-totalview

[87] pvmmpi99-totalview-tr

[88] dgw02:wan-ftp

[89] dg02:wan-ftp

[90] contextid-12

[92] Dongarra01022011

[93] crpchandbook

[94] dozsa-threads-10

[95] gropp93

[97] evans03:network
Jeffrey Evans, Cynthia Hood, and William Gropp. Exploring the rela-

[98] EVA03.soft

[99] falz05:mpi-impl

[100] falz07:mpi-debug

[101] 6702642

[102] nes06

[103] forsman95

[104] forsman95rpt
K. Forsman, W. Gropp, L. Kettunen, D. Levine, and J. Salonen. Solution

[105] ppsc95*225

[106] mpi-1-standard

[107] mpi-nexus-pc

[108] ppsc91*307

[109] FGS

[110] of03:sourcebook:pgmmodes

[111] icpp90-3*35

[112] alice-infrastructure
Lori Freitag, William Gropp, Paul Hovland, Lois Curfman McInnes, and

[113] frei99:num-soft

[114] gahvari10

[115] conf/ics/GahvariBSYJG11

[116] DBLP:conf/icpp/GahvariGJSY12

[117] conf/ipps/GahvariGJSY13

[118] Gahvari15-AMG-Dragonfly

[119] ppsc93*160
[120] galbreath:applio

[121] Geist:1996:MEM

[122] 10.1109/CLUSTER.2010.11

[123] conf/pvm/GoodellGZT11

[124] DBLP:journals/cacm/GopalakrishnanKSTGLSSB11

[125] gottbrath06:mpi:debugging
[126] Greengard88

[127] ppsc87*213

[128] greengardgropp90

[129] Gropp86a

[130] Gropp88c

[131] Gropp88a

Gropp:1995:DPM

Gropp:1995:IMM

Gropp:1995:MMI

Gropp:1997:HPM

Gropp:1997:SMC

Gropp:1996:HPI

GroppMore97

Gropp:1994:SEP
[143] 6636318

[144] Gropp84A

[145] Gropp84

[146] Gropp85

[148] gkks99:perf-bounds

[149] gkks:cfd-hiperf-tr

[150] gkks:cfd-perf

[151] gkks:cfd-scal-perf00
[152] gkks:cfd-hiperf-art

[153] gkks:cfd-perf-proc

[154] GKSko0

[155] WDGropp_DEKeyes_1989b

[156] WDGropp_DEKeyes_1990a

[157] WDGropp_DEKeyes_1991a

[158] WDGropp_DEKeyes_1992c

[159] WDGropp_DEKeyes_1992a

[161] WDGropp_DEKeyes_JSMounts_1994a

[162] WDGropp_DEKeyes_MDTidriri_1995a

[164] gropp-odonnell84

[165] WDGropp_BFSmith_1994a

[166] Gropp87b

[167] gro90:par-comp

[168] gropp91:visual-artifacts

[169] GroppWilli93a

[170] gropp93:parallel

[171] groppscs93

[172] GroppWilli1995b

[173] gropp-siamoo-98

[174] gropp00:petsc-lessons

[175] DBLP:conf/cluster/Gropp01

[176] DBLP:conf/pvm/Gropp01

[177] gropp01:mpi-misc
William Gropp. Learning from the success of MPI. Technical Report

[178] gropp02:mpi-generic

[179] DBLP:conf/pvm/Gropp02

[180] gro03:sourcebook:poisson

[181] gro03:mpitrends

[182] gro03:sourcebook:

[183] gro03:beowulf:use

[184] qcdoc03:trends

[185] gro04:par-soft
[186] gro04:mpi-pgming
William Gropp. MPI and high productivity programming. In Dieter
Kranzlmüller, Peter Kacsuk, and Jack Dongarra, editors, Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface, num-
ber LNCS3241 in Lecture Notes in Computer Science, page 7. Springer
Verlag, 2004. 11th European PVM/MPI User’s Group Meeting, Budapest,
Hungary.

[187] grop05:progmodels
William Gropp. Towards a productive MPI environment (abstract). In
Beniamino Di Martino, Dieter Kranzlmüller, and Jack Dongarra, editors,
Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face, number LNCS 3666 in Lecture Notes in Computer Science, page 4.
Springer Verlag, September 2005. 12th European PVM/MPI User’s Group
Meeting, Sorrento, Italy.

[188] Grop07GridSummary
James C. T. Pool, editors, Grid-Based Problem Solving Environments,
pages 451–453. Springer, 2007. IFIP International Federation for Infor-
mation Processing, Volume 239.

[189] 1612212
William Gropp. MPI at Exascale: Challenges for data structures and
algorithms. In Proceedings of the 16th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message

William Gropp. Best algorithms + best computers = powerful match.

[191] mpi-success-12
William Gropp. MPI 3 and beyond: Why MPI is successful and what
challenges it faces. In Jesper Träff, Siegfried Benkner, and Jack Don-
garra, editors, Recent Advances in the Message Passing Interface, volume
7490 of Lecture Notes in Computer Science, pages 1–9. Springer Berlin /

[192] xpacc-cse15
William Gropp. Building performance transportable codes for extreme
scale. In 2015 SIAM Conference on Computational Science and Engi-
neering, page 287, Salt Lake City, Utah, March 2015. SIAM. Poster in
Minisymposterium 204: CSE Software.

[193] fpmpi
William Gropp, David Gunter, and Valerie Taylor. FPMP: A fine-tuning
performance profiling library for MPI, November 2001. Poster presented
[194] Grop07Grid

[195] UsingAdvancedMPI

[196] conf/pvm/GroppHTT11

[198] gkmt-nks00

[199] gkmt-nks-98-preprint

[200] gkmt-nks-98

[201] gropp06:_paral_tools_envir
William Gropp and Andrew Lumsdaine. Parallel tools and environments:

[202] GroppWilli92a

[203] pvmpipi99-mppptest-tr

[204] gro03:beowulf:mpi2

[205] gro03:beowulf:mpi1

[206] gropp04:mpi-fault

[208] gropp-lusk-skjellum:using-mpi2nd

[209] UsingMPI3rd

[210] beowulflinux2nd
[211] gropp-swider-lusk99

[212] gropp-lusk-thakur:usingmpi2

[213] DBLP:conf/pvm/GroppL02

[214] DBLP:conf/pvm/GroppL03

[215] sc13-specialissue

[216] gro04a:pario

[217] gro04:par-io;tr

[218] gro88:par-cfd

[219] WilliamGropp11012009

[220] gro05:mpi-rma-impl

[221] pmodels-mpi:15

[223] gropp-thesis

[224] gropp83

[225] groppLUMR87

[228] gropp-nla87

[229] groppardapt88

[230] gropp-dyngrid89

[231] gropp91

[233] bfort-manual

[234] doctext-manual

[235] tohtml-manual

[236] groppdebug97
William D. Gropp. An introduction to performance debugging for parallel

[237] gropp-mppm97

[238] gropppetsc97

[239] groppmaui97

[240] gro:mpi-datatypes:pvmmpi00

[241] gro00:mpi-impl

[242] gro01:mpi-lessons

[243] gro02:mpi-impl:generic

William D. Gropp. MPI and hybrid programming models for petascale computing. In Lastovetsky et al. [336], pages 6–7.

[252] ghs-pm-siamcse11

[254] groppkaper94

[255] groppkaper96

[256] gropp00performance

[257] gkks00:fun3d

[258] gropp06:radtransport

[259] groppkeyes89

[260] groppkeyes90
William D. Gropp and David Keyes. Parallel performance of domain-decomposed preconditioned Krylov methods for PDEs with adaptive re-

[263] ppsc89*295

[264] groppkeyes90b

[265] groppkeyes91a

[266] groppkeyes91

[267] groppkeyes-asympt92

[268] groppkeyes92
[269] groppkeyesmcinnestidiriri97

[270] DBLP:conf/pvm/GroppKRTT08

[271] gropp06:ppsurvey

[272] groppluskk94

[273] mpich-install

[274] mpich-user

[275] groppluskpvmmpi97

[276] groppluskpvmmipi97

[277] pvmpi99-mpptest
William D. Gropp and Ewing Lusk. Reproducible measurements of MPI performance characteristics. In Jack Dongarra, Emilio Luque, and Tomás

[278] groop02:mpi-pvm

[279] groo04:mpi

[280] grooppluskpieper94

[281] grooppluskmppm95

[282] GroppMcInnesSmith95

[283] GroppWilli11995a

[284] groppmore97rpt
[285] groppschultz89

[286] groppschultz90

[287] SLES-manual

[288] KSP-manual

[289] Chameleon-manual

[290] groppsmith95

[293] groppsmith90

37
[294] grop06:mpi:threads
William D. Gropp and Rajeev Thakur. Issues in developing a thread-safe
MPI implementation. In Bernd Mohr, Jesper Larsson Träff, Joachim Wor-
ringen, and Jack Dongarra, editors, Recent Advances in Parallel Virtual
Machine and Message Passing Interface, number LNCS 4192 in Springer
Lecture Notes in Computer Science, pages 12–21. Springer, September
2006.

[295] DBLP:conf/pvm/GroppT07
William D. Gropp and Rajeev Thakur. Revealing the performance of MPI
RMA implementations. In Cappello et al. [70], pages 272–280.

[296] guo2013applications
D. Guo and W. Gropp. Applications of the streamed storage format
for sparse matrix operations. International Journal of High Performance

[297] GuoGropp10
Dahai Guo and William Gropp. Optimizing sparse data structures for
matrix-vector multiply. International Journal of High Performance Com-

[298] Guo01022014
Dahai Guo and William Gropp. Applications of the streamed storage
format for sparse matrix operations. International Journal of High Per-

[299] Guo14072015
Dahai Guo, William Gropp, and Luke N Olson. A hybrid format for better
performance of sparse matrix-vector multiplication on a GPU. Interna-

[300] grop-hedstrom83
G. W. Hedstrom and William D. Gropp. The computer as an aid in the
asymptotic estimation of integrals. Technical Report UCRL-87297,
Lawrence Livermore National Laboratory, August 1983.

[301] herbin87
R. H. Herbin, W. D. Gropp, D. E. Keyes, and V. Sonnad. A domain de-
composition technique on a loosely coupled array of processors. Technical

[302] mpi-mpi-hybrid-programming
T. Hoeffer, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur. MPI + MPI: a new hybrid approach
to parallel programming with MPI plus shared memory. Journal of Com-

Weihang Jiang, Kiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda,

[310] kale2011weighted

[311] kale-mpi-10

[312] conf/iwomp/KaleG15

[313] conf/pvm/KaleRG14

[314] ksfglb00:mpi-collective

[315] kar02:mpi-impl

[316] kdSFGLB00:mpi-ngi
Nicholas T. Karonis, Bronis R. de Supinski, Ian Foster, William Gropp,

[317] kaushik08-tensor

[318] kend06:pde

[319] kettunenforsman93

[320] kettunen94

[321] kettunenforsmanlevinegropp94

[322] KEYES85

[323] DEKeyes_WDGropp_1989a

[324] **DEKeyes_WDGropp_1991a**

[325] **DEKeyes_WDGropp_AEcder_1989a**

[326] **scalesv1-03**

[327] **scalesv2-04**

[328] **nsf-soft10**

[329] **Keyes:1987:CDD**

[331] **keyesgropp90**
[332] Keyes:1990:DDT

[333] keyesgropp92

[334] Keyes01022013

[335] KeyesMcInnesWoodwardEtAl12

[337] DBLP:conf/pvm/LathamGRT07

[338] LevGroForKet99:petsc-coral

[339] li03:pnetcdf

[340] liu03:mpich2-infiniband

[341] liu03:mpich2-infiniband-ipdps

[342] lusk03:beowulf:pgmming

[343] conf/hpdc/LuuWGRCHPBY15

[344] mellor2010teaching

[345] mpi-2-standard
Message Passing Interface Forum. MPI2: A message passing interface

[346] **ppsc89*386**

[347] **NAP21886**

[348] **NAP18972**

[350] **Dagstuhl:2007**

[351] **ong-lusk-gropp:SUT**

[352] **ong-lusk-gropp:SUT-tr**

Ros03:mpidatatype

Ross04:mpi-impl:tr

1612222

Ross:mpi-io:atomic

Rfgkst00:mpichg-qos-sc

Rfgkst00:mpichg-qos

Sack-exascale-10

[369] 1577927

[370] jms04:grid

[371] DBLP:conf/pvm/SharmaVGKTG08

[372] shen:accel

[373] 5725240

[374] SkjellumAn1994a

Anthony Skjellum, Ewing Lusk, and William Gropp. Early applications

[376] cfd2030tr

[377] slotnick2014enabling

[378] BFSmith_PEBjorstad_WDGropp_1996a

[379] smithgropp96

[381] tg00:io-chapt

[382] tha03:mpicollective

[383] thakur03:mpi-col1
Rajeev Thakur and William Gropp. Improving the performance of collective operations in MPICH. Technical Report ANL/MCS-P1038-0403,
Mathematics and Computer Science Division, Argonne National Laboratory, 2003. Appeared in Euro PVMMPI’03.

[384] thak03:sourcebook:mpiio

[385] conf/aPcsac/ThakurG07

[386] DBLP:conf/pvm/ThakurG07
Rajeev Thakur and William Gropp. Test suite for evaluating performance of MPI implementations that support MPI::THREAD::MULTIPLE. In Cappello et al. [70], pages 46–55.

[387] thakur09:MPIthreads

[388] ThakurGroLus96

[389] thakur:abstract-tr

[390] thakur:evaluation
[391] thakur:evaluation-tr

[392] ROMIOUsers

[393] thakurgroplusk-datasieving98

[394] thakur-gropp-lusk-mpiio

[395] thakurfrontiers99

[396] thak99b

[397] tgl02:mpiio

[398] ree04:mpi-io

[399] tha04:mpi-impl
Rajeev Thakur, William Gropp, and Brian Toonen. Minimizing synchronization overhead in the implementation of MPI one-sided communication.

[400] thak04:mpi-impl:rma

[401] thak05:mpi-impl:rma

[402] thak05:mpi-impl:rma:preprint

[403] thakur:astrophysics

[404] thakurluskgropp-io97

[405] thakurluskgropp-datatype98:sc98

[406] thakurluskgropp-datatype98
[407] thakurluskgropp98

[408] thak04:mpi-impl:coll

[409] thak05:mpi-impl:coll

[410] 1679706

[411] toas01:bnr-design

[412] DBLP:conf/pvm/TraffGT07
Jesper Larsson Träff, William Gropp, and Rajeev Thakur. Self-consistent MPI performance requirements. In Cappello et al. [70], pages 36–45.

[413] traff2010

[414] DBLP:conf/pvm/TraffRSBTG08

[415] JesperLarssonTraff02012010
Jesper Larsson Träff, Andreas Ripke, Christian Siebert, Pavan Balaji, Rajeev Thakur, and William Gropp. A pipelined algorithm for large,

[416] DBLP:conf/pvm/VakkalankaDGKTG08
Sarvani S. Vakkalanka, Michael Delisi, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev Thakur, and William Gropp. Implementing efficient dynamic formal verification methods for MPI programs. In Lastovetsky et al. [336], pages 248–256.

[417] vin01:mpi-impl

[418] deflatedgmress13

[419] wagg01:linux-petsc

[420] SCO0-CD-ROM*50

[422] 1598125

[423] zaki-lusk-gropp-swider99
Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward

[424] zaki-lusk-gropp-swider99-techrpt

[425] 6808175

[426] conf/ccgrid/ZhaoBG15

[427] 6844416

[428] zhao13-am-mpi

[429] adaptive-rma-12

[430] 1612262

[431] zima:hpp104