
Scalable Unix Tools on Parallel Processors

William Gropp and Ewing Lusk
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL, 60439

Abstract

The introduction of parallel processors that run a
separate copy of Unix on each process has introduced
new problems in managing the user’s environment.
This paper discusses some generalizations of common
Unix commands for managing files (e.g. ls) and pro-
cesses (e.g. ps) that are convienient and scalable.
These basic tools, just like their Unix counterparts,
are text-based. We also discuss a way to use these
with a graphical user interface (GUI). Some notes on
the implementation are provided. Prototypes of these
commands are publically available.

1 Introduction

Many massively parallel processors (MPPs) are
providing a full Unix environment on each proces-
sor. This has many advantages, including providing
a standard environment that users are familiar with.
The disadvantage is that many common tasks, such
as listing processes and files on each processor, can
now take a significant amount of time and generate
too much output to be quickly grasped.

This paper discusses the design of versions of
some commonly used Unix tools for this kind of
parallel environment as well as some issues rele-
vant to their implementation. Prototype versions
of many of these programs have been written as
shell scripts and are in use at the High Performance
Computing Research Facility at the Argonne Na-
tional Laboratory. These prototypes are available
by anonymous ftp from info.mcs.anl.gov in file
‘pub/ibm_sp1/ptools.tar.Z’.

In designing these programs, we set several goals
that we believe are crucial to their success. The tools
should be:

• Familiar to Unix users. They should have
easy-to-remember names (we chose to use

Figure 1: pps -all aux | egrep -v \
"root|USER|$LOGNAME" | pdisp.

p<unix-command-name>) and take the same ar-
guments.

• Scalable. They should be fast enough to use with
the same regularity that users use ls and ps, re-
gardless of the number of processors.

• Not generate too much output. It should be pos-
sible to restrict the amount of output to a single
screenful.

For example, to list the processes belonging to joe,
we propose

pps -all aux | grep joe

which is almost identical to the uniprocessor version
ps aux | grep joe.

The last requirement on the amount of output is
difficult to make consistent with the first requirement.
That is, if the natural extension of the Unix command
to many processors would produce several hundred
lines of output, we have no choice but to generate
that data. However, we do provide two ways to help
achieve this third goal. One way is to generate the

output in a form that makes it easy for the user to
provide his own filters. Another is to provide some ad-
ditional programs that provide options that can help
the user reduce the amount of output. An example
of this is in looking for a file. On uniprocessor Unix
systems, the command ls is often used to check if a
file is present: the user types ls filename (or even
just ls) and looks at the output to see if the file is in-
deed present. This is (usually) fine on a uniprocessor
system, but on a parallel processor with individual file
systems, this could generate hundreds of lines of out-
put. Worse, if the file is present on most but not all
processors, it is easy to miss that fact in the massive
outpouring of data that executing ls on each proces-
sor could produce.

The solution to this problem lies in looking at other
ways that Unix provides to answer the same question.
For example, on a uniprocessor system the user could
have executed

test -s filename
if ($status == 0) echo "no such file"

We provide a capability like this with ppred, where
we have simplified the interface by combining the test
with the action.

Managing processes has the same problem; execut-
ing ps on even a few processors can produce too much
data to grasp easily. We introduce a command pfps
that provides services similar to find applied to the
space of processes instead of files.

An alternative way to manage large volumes of data
is to use graphical rather than text-based display. We
describe a program pdisp that can translate the out-
put from our other tools into a graphical display.

In order to simplify the processing of any output
from any of these tools by other Unix tools (including
the graphical display tools we will discuss in Section
2.13), all output lines are prepended with the node-
name of the processor.

It is particularly important that output be “line-
atomic;” that is, output send to stdout from one pro-
cessor should not appear in a line generated by another
processor.

The general principle is important: disconnecting
the functionality from the GUI. The use of ASCII text
as an interface between tools is one of the most fun-
demental design features of Unix. It should not be
abandoned because of the advent of GUI‘s; it remains
relevant as the key to leveraging the power of software
tools.

2 The tools

The tools that we have implemented fall into three
broad classes: programs for manipulating the file sys-
tem, programs for manipulating the process space, and
programs for running arbitrary commands on all pro-
cessors.

Command Action
pcp Parallel copy (for systems with

local disks on each node).
pcat Parallel concatenation of files
pls Parallel directory list (ls).
prm Parallel remove
pmv Parallel move
pfind Parallel find
pps Parallel ps
pfps Parallel process find
pkill Parallel process kill
pexec Run a command on all selected

processors
ptest Run test on all selected

processors, anding the results
and returning a single status
value.

ppred Run a command when a
condition is satisfied

pdistrib Run a command on a collection
of files

pdisp Display the output of a
command graphically

The programs that generate output (such as pls)
use the same format as their Unix counterparts except
that the name of the processor that generated the out-
put is prepended to each output line. This allows the
output to be sorted by processor. An alternate ap-
proach is to separate the output by processor name;
we did not do this because it makes it harder to use
the output as input to other programs.

All of the commands take as their first argument a
specification of the processors to run on.

2.1 Specifying Nodes

Nodes may be specified in several ways. The sim-
plist specification is a list of node names:

node3,workstation2,big-server

This method is adequate for small numbers of nodes.
For larger numbers of nodes, we introduce the domain,
which is a collection of nodes. For example, a domain
may include every node in an MPP. A domain may

either be specified by a name defined when the tools
are installed on a system (such as “paragon” or “sp1”)
or a name of a file (preceeded by @) that contains a list
of nodes. For example, if the file ‘mynodes’ contains

node3
workstation2
big-server

then the specification @mynodes specifies the same
nodes as the first example above.

Within a domain, it is often desirable to select a
subset of nodes. This is done by numbering the nodes
consequetively within a domain, starting from one.
The numbers are specified as any combination of ind-
vidual node numbers and ranges of consequtive nodes,
separated by commas. For example, 1,4-8,17 speci-
fies nodes 1, 4, 5, 6, 7, 8, and 17 in the given domain.
A set of nodes within a domain is specified by giving
the domain, followed by a colon, followed by the list of
nodes. For examples, using the domain defined above,
the nodes node3 and big-server could be specified
with

@mynodes:1,3

There should always be a default domain. For ex-
ample, the domain that the processor from which a
command was run belongs to is often a good choice of
default domain. For MPPs with front-end processors,
the default domain on the front-end processors should
be the MPP.

Multiple domains may be specified; for example,

1,3-5,17,@mynodes:2-3

specifies nodes 1, 3–5, and 17 in the default domain
and nodes 2–3 in the domain mynodes. We chose num-
bers for input because they are concise. For output,
the node name is probably better, though for some
uses, just the number in the domain would be easier
(for example, in placing output in a GUI display).

We provide the routine phostname as a parallel ver-
sion of hostname; this provides a simple way to con-
vert a nodelist to the names of the nodes. Note that
phostname can be implemented by using pexec with
program hostname

To summarize, the nodelist may be specified by the
following YACC-like grammar, where [a] denotes
an optional a and single quotes surround terminal
symbols, and <...> surround descriptions of simple
tokens like integers and filenames.

nodelist -> ’-all’
nodelist -> domain ’:’ nodelist

nodelist -> range [, nodelist]
nodelist -> nodenum [, nodelist]
nodelist -> nodename [, nodelist]
domain -> <predefinedname>
domain -> ’@’ <valid filename>
range -> nodenum ’-’ nodenum
nodenum -> <integer>
nodenum -> ’last’
nodename -> <any valid nodename>

Nodes are numbered from one. The special value -all
denotes all nodes. The special nodenum last denotes
the number of nodes in the current domain. These
numbers may refer to nodes in an MPP or to members
of a workstation network.

2.2 Parallel ps

The parallel ps has the same format as ps with the
exeception of the specification of the processors to run
on. The output is similar except that each output has
the processor number prepended. The output is not
sorted by processor number.

For example, to find all “defunct” processes on a 64
node system, use

pps 1-64 aux | grep ’<defunct>’ | sort

Note that this does not run grep and sort in parallel.
An alternative approach is described below that uses
pfps.

2.3 Parallel ls

The command pls runs ls on the specified systems.
Exceptions: The option -t to ls sorts the files by

time; the output from pls will preserve this only on
a processor-by-processor basis. The behavior is the
same for all other options to ls that sort the output.

2.4 Parallel cat, cp, mv, and rm

The command pcp copies a file from a sin-
gle location to the local disks on a specified list
of processors. For example, to copy ‘mycode’
to ‘/tmp/myname/mycode’ on processors 1 and 32
through 63, use

pcp 1,32-63 mycode /tmp/myname/mycode

We considered using the name pdist rather than
the name pcp because pcp does a one-to-many copy.
We decided that pcp was a better choice because a
common use is the parallel version of

cp mycode /tmp/myname/mycode

that is, the distribution of an executable or data file
to the local disks.

The command pcat concatenates files from the
specified nodes onto standard output (stdout). We
note there are aspects of this command that are in-
herently non-scalable; however, it is so useful that it
needs to be provided. The command

pcat 1-10 /tmp/testfile > myfile

concatenates the file ‘/tmp/testfile’ on nodes one
through ten to the file ‘myfile’. The results are con-
catenated in the listed node-number order.

The command prm executes rm on the specified
nodes.

The command pmv executes mv on the specified
nodes. Files may only be moved within a single pro-
cessor. That is, a file may be moved from one place
to another on the local disk of a processor, for each
processor selected.

Note that in all of these cases, the interactive option
(-i) is not supported.

2.5 Parallel find

The command pfind executes the Unix command
find on the specified list of processors. For example,
to find all of the files on the local disks that are older
than two days, use

pfind 1-128 /tmp -atime ... -print

2.6 Parallel process find

Many of the uses of ps are similar to the uses of ls,
such as determining the age of a process (resp. file) or
owner of a process (resp. file). Because a file system
often contains large numbers of individual files, the
Unix command find provides a way to find files that
satisfy some common properties. Because the num-
ber of processes is relatively small, there has been no
counterpart to find for processes. However, with 30
to 60 processes on each processor, a ps of even a small
parallel system can generate hundreds to thousands of
lines of output. In this section, we propose a process
find (and its parallel version) that provides the same
style of functionality that find provides for the file
system.

Just as with find, multiple matching criteria are
and’ed together. For example, to find out which pro-
cesses named bigjob have been running for at least
one day, use

pfps -all -tn bigjob -stime 1:0:0 -print

The options for pfps are given in Table 1.

2.7 Parallel predicate

This command uses a user-specified predicate to se-
lect which nodes to execute a user-specified command
on.

ppred nodespec predicate action

For example, to find out on what processors in a 128
node system the file /tmp/prog is not present, you can
use (assuming csh is the shell)

ppred 1-128 ’\!-s /tmp/prog’ ’echo $hostname’

(note the escape on the c-shell ‘not’ symbol ! and the
use of ‘...’ to prevent premature evaluation of the
predicate and action.

2.8 Parallel test

This command forms the logical ‘and’ of the results
of running test on each selected node.

ptest nodespec testcondition

For example, to check if all processors have the file
/tmp/myprog, you can use

ptest 1-128 ’-s /tmp/myprog’

2.9 Parallel kill

The command pkill kills a named process on the
selected nodes. It is basically a simplification of pfps;
the command

pkill 1,10-24 SIGQUIT -tn myprogram

is equivalent to

pfps 1,10-24 -tn myprogram -kill SIGQUIT

2.10 Parallel execution

The command pexec provides a way to execute
an arbitray command or (uniprocessor) Unix program
on a list of processors. The format of this command
is pexec nodelist ...command.... For example, to
run ps on each node and grep for <defunct> in par-
allel, use

pexec 1-64 "ps aux | grep ’<defunct>’" | sort

Option Description
-n name Match with the name of the process. The name may contain wildcards.
-tn Match the tail name of the executable
-o owner Match with the owner (by name) of the process. By default, only the user name of the

caller is matched. Use -o ’*’ to match any user name.
-pty name Match with the controlling terminal of the process
-rtime hh:mm Match with jobs that have run hh:mm time or longer.
-stime dd:hh:mm Match with jobs that started at least dd days, hh hours, and mm minutes ago.
-r state Match with jobs in the specified run state
-or Combine matching criteria by or’ing them.
-print Causes matching jobs to be printed in the selected ps format.
-id Causes matching jobs to be printed as nodename:pid.
-sort Causes the output to be sorted by nodename
-exec pgm args Executes pgm for each matching process. Similar to find, the string \{\} stands for the

pid of the matched process, and \; indicates the end of the list of arguments to give to
the program.

-kill signal Causes all matched processes to be killed with the specified signal. The signal value may
be either the number or the name (for example, -kill 9 and -kill SIGQUIT are the
same).

-nice n Sets the nice value of matched jobs.

Table 1: Options for the pfps command

The prototype implementation uses pexec to imple-
ment many of the functions described in this pa-
per. Any output generated from the commands is
prepended by the name of the processor that gener-
ated it.

2.11 Parallel execute script

The command pexscr takes input from standard
input and executes each line on the indicated proces-
sor. The format of the input is

processor_name arbitrary_command

This format matches the output format from the other
parallel commands, allowing awk or perl to construct
command scripts to execute from the output of the
parallel commands.

2.12 Parallel distribute execution

The command pdistrib takes a list of files and
a command to apply to the files, and distributes the
processing of the files across the specified processors.
For example

pdistrib -all "cc -c" *.c

causes the compilation of all of the C files in the cur-
rent directory to be distributed across all available
processors.

2.13 Parallel display

The command pdisp takes input from standard in-
put and displays it.

The options for pdisp are

Option Action
-yes colorname Color of nodes appearing in

input
-no colorname Color of nodes not appearing in

input
-down colorname Color of down nodes
-text string Text for nodes appearing in in-

put. This string may contain
formatting information such as
$3 for the third token in the
line.

-small Do not display text unless but-
ton pressed (produces small
display)

-store Save text with node; pushing
the left mouse button will dis-
play the text.

-layout RxC Layout of R rows and C columns
-domain name Name of the machine’s domain
-pserver name Use a pre-existing display
-pstart name Make this a pdisp display

server

For example, to graphically display the nodes on
which the program bigjob is running, use

pfps -all -tn bigjob | pdisp

The options -pstart and -pserver allow the dis-
play window to be reused by several commands. For
example, to create a display, then display the nodes
without the file ‘/tmp/mydata’, and then display the
nodes with defunct jobs, do

pdisp -pstart mydisp
ppred -all \!-s /tmp/mydata | \

pdisp -pserver mydisp
pps -all aux | grep ’<defunct>’ | \

pdisp -pserver mydisp

A sample display is shown in Figure 1.
Each node on the display in Figure 1 is actually

a button. For example, using the middle button of
a three-button mouse pops up an xterm on the indi-
cated node. Pushing the left button pops up all of the
output associated with that node.

2.14 Parallel partition info

Many MPP’s provide a mechanism for reserving
parts or all of the MPP for use by a single pro-
gram. These are often called partitions. The com-
mand pinfo displays the partitions in use and the
user that owns that partition. It takes many of the
same arguments as pdisp. A sample display is shown
in Figure 2 (node 32 is down).

Figure 2: Display of partition availability and users of
partitions.

3 Implementation

It is important that these commands themselves
execute in parallel. In interactive use, it is common
to expect a command to complete in a second or less.
The parallel version of the same command should not
take much longer. This requires that the commands
be executed in parallel.

A simple way to arrange for parallel execution is
to use recursive subdivision. Each node is given some
number of processes to run a command on. It divides
that list in half, and sends the upper half to the first
processor in that half. This process continues until
only one process is left. This takes log p steps for p
processes. A simple form of this is shown in Figure 3
for pls. This sample code has no error checking and
assumes a single range of processors from start to
end. The names of the nodes are spnodei, for i = 1, . . .

Various optimizations of this process are possible.
For example, for small numbers, the recursive subdivi-
sion may be replaced with a simple loop. Other opti-
mizations can take advantage of the particular struc-
ture of a parallel machine, adapting the subdivision
strategy to the available communication network and
services.

In order to provide maximum parallelism, each sub-
division must execute the subdivided processes in the
background. It is important to ensure that a command
does not return until all of its children have completed.

Many of these commands can be implemented in

#! /bin/csh
set start = $1
set end = $2
shift
shift
set nodename = ‘hostname‘
ls $* |& sed "s/^/$nodename/g"
while (1)

if ($start >= $end) break
Compute the separator for the tree
@ sep = ($start + $end) / 2
if ($sep == $start) then

@ sep = $sep + 1
if ($sep > $end) break

endif
rsh spnode$sep -n /tmp/pls $sep $end $* &
@ end = $sep - 1

end
wait

Figure 3: Simplified code for parallel ls

terms of pexec or ppred, perhaps combined with some
relatively simple awk or perl scripts. We have chosen
to provide a larger set of commands because they rep-
resent common cases for which we believe shortcuts
should be provided.

On many systems, the time to load a program
from a central filesystem can be significant. On these
systems, programs (including these tools) should be
loaded from local disks (assumed to be ‘/tmp’). Our
prototype implementation includes a program ptinit
that copies the codes to /tmp. The programs that are
executed by these tools (e.g., ps) should also reside on
local disks where possible.

To handle the case where a node in the list is not
responding or unavailable, the programs should is-
sue a warning message and skip to the next process
in the upper half to insure that processors are not
missed because their ‘parent’ in the subdivision tree
was not available. Because it is time-comsuming to de-
tect down nodes, a replicated database of down nodes
should be used.

The implementation of parallel exec should sort the
input script and use the recursive subdivision (or at
least collect all commands for the same processor to-
gether and send them in a lump).

Also note that all of these commands can execute
faster if a server process is always running on each of
the parallel processors. Such a server is not required

however; the prototype implementation is written en-
tirely in terms of shell scripts.

