Is Predictable Performance Possible?

William D. Gropp
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

Abstract

Programming for performance remains more an art
than a science. While some progress has been made in
the development of predictive models and algorithms
based on those models, the best results are still often
obtained by trial and error. This situation is illus-
trated by recent work of several groups on perhaps the
simplest problem for which high floating-point perfor-
mance can be expected: matriz-matriz multiply.

1 Introduction

The gap between peak and achieved performance
on many important scientific applications is large; sus-
tained performance figures of 5 to 25% are common.
In some cases this reflects a limitation in the hardware
(Section 2), but often it is due to the complexity of the
architecture and the resulting difficulty in producing
effective code. This is illustrated with the very sim-
ple case of dense matrix-matrix multiply in Section 3.
The results show that it is very difficult to predict
the performance of an algorithm; hence, application
writers and algorithm developers are often reduced to
a trial-and-error approach. Developers fall back on
performance understanding; but as discussed in Sec-
tion 4, even with the support of hardware counters,
this is very difficult.

2 Sparse Matrix-Vector Multiply

The most efficient algorithms (in terms of floating-
point operations) for the solution of large, sparse sys-
tems of linear equations are preconditioned iterative
methods. A key operation in these methods is a
matrix-vector multiply. In actual practice, the perfor-
mance of this matrix-vector product is disappointing.
We can understand this performance by using a very
simple model.

Let the sparse matrix be stored in AILJ format. In
this format, there is an array A containing the non-
zero elements of the matrix, an array J containing the
column indices of each element, and an array I con-
taining information on the number of non-zero matrix
entries in each row of the matrix. If there is no other

structure, this is the minimum amount of information
that must be stored. The code for a matrix-vector
multiply then looks like

for (k=0;k<n;k++) {
nrow = il[k+1] - i[k];
sum = 0;
while(nrow--)
sum += *a++ * x[*j++];
*xy++ = sum;

}

Assume that the problem is large enough that it does
not fit in cache. We can set an upper bound on the
performance of this operation by considering only the
main memory bandwidth. Here are the operations:

1. every row, fetch ia[k+1]
2. fetch nrow values from j, a
3. fetch every element of x (perfect cache)

4. perform a floating multiply-add with each ele-
ment of a

5. every row, store y[k].

Let there be m non-zeros and n rows. The total data
volume is

n * (sizeof (int) + 2 = sizeof (double))
m * (sizeof (int) + sizeof (double))

(ia,z,y)
(ja,a)
There are m floating-point multiply-adds. A typical

simple problem will have m =~ 5n, and with sizeof(int)
= 4 and sizeof(double) = 8, we have

nx(44+2x8)+mx*(4+8)
nx(4+2x84+5x%(4+8))
nx (4416 + 5% 12)

= 80xn

= 16 * m(2 doubles per MA)

bytes

This really isn’t too bad, except: Consider a 200 MHz
processor capable of a MA (multiply-add) each cy-
cle (roughly a SGI Origin2000) or a 100 MHz proces-
sor capable of two MAs each cycle (roughly an IBM
P2SC). The computation will require 16 bytes per MA,
or 3.2 GB/sec bandwidth. This is (roughly) 3-6 times
what is actually available. Note that the calculation
assumes that data is read only once, particularly the
vector. If the vector elements, because of cache misses,
must be read several times (such as another 2n times),
the necessary bandwidth increases.

The real situation is even worse, of course. This
analysis doesn’t include the effects of limitations of
cache associativity or the latency of the memory sys-
tem. These must also be taken into account. Differ-
ences between loads and stores are also ignored.

We can reverse the calculation. Given a memory
bandwidth, we can calculate the maximum number of
flops that can be supported. For example, if the main
memory bandwidth is 0.5 GB/s, then the maximum
flop rate is 31 MAs or 62 MFlops (out of 400 peak
MFlops). These numbers do, in fact, match the the
observed performance on several systems.

In many ways, this is just a rediscovery of the fact
that matrix-vector operations constrain the opportu-
nities for high performance. So, for operations that are
constrained by a single resource such as main memory
bandwidth, performance is indeed predictable (if dis-
appointing).

3 Dense Matrix-Matrix Multiply

Computing the product C = A x B of two large,
dense (all entries non-zero) matrices is a common op-
eration that is both important to a class of scientific
applications (it is the building block for both solving
linear equations and finding eigenvalues) and has been
heavily studied as an archetypical kernel for compiler
code generation (see, e.g., [1]). In addition, it has
the property that there are n® floating-point opera-
tions for n? data elements.! Because each data item is
reused roughly n times, main memory bandwidth is no
longer a performance limitation, and carefully crafted
code can often reach a significant fraction of peak per-
formance for the operation of matrix-matrix multiply.
In fact, this operation is a key part of the level 3 BLAS
[2] and is performed by the BLAS routine DGEMM.
Computer vendors often provide carefully tuned im-
plementations of the BLAS; DGEMM is particularly
important because it is a common building block for
other software.

I This ignores Strassen’s algorithm, which lowers the floating-
point operations to n2-8.

An indication of the lack of predictability is the
emergence of projects that perform a direct search
over the space of possible implementations. Two such
projects are ATLAS [3] and PHiPAC [4, 5]. These
parameterize the basic matrix-matrix multiply algo-
rithm, and then measure the performance of the re-
sulting code. The results are startling: ATLAS, ap-
plied to seventeen different systems (six major proces-
sor families) outperforms the vendor version in nine
of the seventeen cases (sometimes by more than 50%),
and is never significantly slower [6].

Even more startling is the poor performance of the
original Fortran implementation of DGEMM. On one
system, the performance of the original Fortran code
is a factor of eight slower than the ATLAS version [7].

These results serve as a reality check on the hope
that compilers will be able to handle the complexities
of modern systems in the near future. An example
of the sort of analysis that a compiler might need to
undertake can be found in [8]; even here, the effects of
cache associativity are ignored. Clearly, the difficulty
in predicting performance makes it extremely difficult
for a compiler to deliver good performance on even
relatively simple computational kernels. Some inter-
esting comments on architectural features such as the
conflicting shape of TLB and cache can be found in

[9]-
4 Testing Performance Hypothesis

Given that performance prediction is so difficult,
most developers must fall back on performance under-
standing. To aid in this, many systems now provide
access to hardware counters that provide counts for
cache misses, floating-point instructions, and so on.
Unfortunately, these are often of only limited use.

The key difficulty with hardware counters is the dif-
ficulty in relating them to the user’s application. Put
another way, a performance measurement is an exper-
iment that tests a hypothesis about the source of a
performance problem. Unfortunately, the hypotheses
that the user may form are not easily answered by
simple hardware counts. Some example hypotheses
are:

1. Cache thrashing caused by too many variables for
the amount of cache associativity

2. Extraneous loads caused by conservative variable
loading by the compiler

3. Specific important branches mispredicted

4. Specific variables not cached effectively (e.g., x in
the matrix-vector multiply example)

The practice of some vendors of not providing as-
sembly code listings at high optimization levels also
eliminates a kind of experiment: did the compiler gen-
erate code that was as tight as the user expected?

Because of the lack of integration between the lan-
guage (and compiler) and the hardware counters, it
is difficult for users to construct tests that unambigu-
ously test a performance hypothesis.

5 Conclusions

Predicting or even explaining performance of real
applications on many current systems is difficult un-
less performance is limited by a single resource such
as main memory bandwidth or instruction issue rate.
The difficulty in generating efficient code for matrix-
matrix multiply shows that the complexity of cur-
rent systems exceeds the ability of production com-
pilers to handle that complexity. A more integrated,
system-oriented approach to performance predictabil-
ity is needed.
Acknowledgments

This work was supported by the Mathematical, In-
formation, and Computational Sciences Division sub-
program of the Office of Computational and Technol-
ogy Research, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38.

References

[1] M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The
cache performance and optimizations of blocked
algorithms,” in Proceedings of the Fourth Inter-
national Conference on Architectural Support for

Programming Languages and Operating Systems,
Apr. 91.

[2] J. J. Dongarra, J. D. Croz, S. Hammarling, and
I. Duff, “A set of level 3 Basic Linear Algebra
Subprograms,” ACM Transactions on Mathemat-
ical Software, vol. 16, pp. 1-17, Mar. 1990.

[3] R. C. Whaley and J. J. Dongarra, “Au-
tomatically tuned linear algebra software.”
http://www.netlib.org.

[4] J. Bilmes, K. Asanovié, J. Demmel,
D. Lam, and C. Chin, “The PHiPAC
WWW home page.” http://www.icsi.

berkeley.edu/ bilmes/phipac.

[5] J. Bilmes, K. Asanovi¢, J. Demmel, D. Lam, and
C. Chin, “PHiPAC: A portable, high-performance,
ANSI C coding methodology and its application
to matrix multiply,” LAPACK working note 111,
University of Tennessee, 1996.

[6]

[7]

8]

[9]

R. C. Whaley and J. J. Dongarra, “Au-
tomatically tuned linear algebra software.”
http://www.cs.utk.edu/ rwhaley/ATL, 1998.

R. C. Whaley and J. J. Dongarra, “Automat-
ically tuned linear algebra software, figure 3.”
http://www.netlib.org.

N. Mitchell, K. Hogstedt, L. Carter, and J. Fer-
rante, “Quantifying the multi-level nature of tiling
interactions,” International Journal of Parallel
Programming, 1998.

N. Mitchell, L. C. N., and J. Fer-
rante, “A compiler perspective on ar-
chitectural evolutions,” Feb. 1997.

http://www.cs.ucsd.edu/users/carter/Papers/icca97.ps.gz;

Workshop on Interactions between Compilers and
Computer Architectures.

