
An Evaluation of a User-Level Data Transfer Mechanism for High-
Performance Networks

Abstract

In this paper, we describe FOBS: a simple user-
level communication protocol designed to take
advantage of the available bandwidth in a high-
bandwidth, high-delay network environment. We
compare the performance of FOBS with that of
TCP both with and without the so-called Large
Window extensions designed to improve the
performance of TCP in this type of network
environment. We show that FOBS can obtain on
the order of 90% of the available bandwidth
across both short- and long-haul high-
performance network connections. For the long-
haul connection, the bandwidth obtained was 1.8
times higher than that of the optimized TCP
algorithm. Also, we demonstrate that the
additional traffic placed on the network because
of the greedy nature of the algorithm is quite
reasonable, representing approximately 3% of
the total data transferred.

1. Introduction

An important area of communications
research is the development, implementation,
and testing of the cutting-edge networking
infrastructure of the future (e.g., Abilene [23],
VBNS[25]). An integral component of such
research efforts is the development and testing of
high-performance distributed applications that,
because of the limited bandwidth and best-effort
nature of the Internet1 environment, were
previously infeasible. Examples of such
applications include distributed collaboration
across the Access Grid, remote visualization of
terabyte (and larger) scientific data sets, high-
performance computations executing on the
computational Grid, Internet telephony, and
multimedia applications. The high-performance
networks currently being developed and tested

offer the promise of connectivity at speeds of up
to 40 gigabits per second. Clearly such high-
performance networks, and the advanced
distributed applications that are and will be
developed to execute on top of this networking
infrastructure, will become a critical component
of the national computational infrastructure.

At the most fundamental level, a high-
performance national-scale (or international-
scale) networking infrastructure must be able to
transfer vast quantities of data across
geographically distributed computational
systems in a very efficient manner. All of the
advanced networking applications currently
being developed, as well as those envisioned for
the future, assume such a high-performance
networking infrastructure. Experience has
shown, however, that advanced distributed
applications executing on top of existing high-
performance networks obtain only a very small
fraction of the available underlying bandwidth
[1,5,6,7,8,10,13]. It is widely believed that the
reason for such poor performance is that the
Transmission Control Protocol (TCP) [14], the
communication mechanism of choice for most
distributed applications, was not designed and is
not well suited for a high-bandwidth, high-delay
network environment [5,6,7,8,16,18,19]. This
issue has led to the development of mechanisms
to improve the performance of the TCP protocol
itself in this network environment [11,18,20,22],
as well as the exploration of user-level
techniques that can circumvent some of the
problems inherent within the protocol
[1,13,16,19,17].

 In this paper, we address the fundamental
issue of realizing the full power available in a
high-bandwidth, high-delay network
environment. In particular, we develop and

Phillip M. Dickens
Department of Computer Science

Illinois Institute of Technology
dickens@iit.edu

William Gropp
Mathematics and Computer Science Division

Argonne National Laboratory
gropp@mcs.anl.gov

evaluate the performance of FOBS1: a simple
user-level communication protocol developed for
distributed applications executing in a high-
performance, high-delay network environment
(i.e., a computational Grid). We compare the
performance and behavior of FOBS against that
of TCP with and without the so-called Large
Window extensions [8] that have been defined to
optimize the performance of TCP in this network
environment. This study evaluates the behavior
and performance of the two approaches across
both short-haul and long haul-haul high-
performance network connections under a
variety of parameter settings and conditions.

While the primary focus of this paper is the
comparison of FOBS with TCP, we are also
interested in the relative performance and
behavior of FOBS and other user-level
approaches. Given that multiple TCP streams
(for a single data flow) are widely used for
GridFTP, we also performed a set of experiments
comparing the performance of FOBS with that of
PSockets [16]. PSockets attempts to
experimentally determine the optimal number of
TCP sockets for a given flow, and then transfers
the data using this pre-determined number of
sockets. We emphasize that such comparisons
are preliminary, and more research is required
before definitive conclusions as to the relative
performance of the two protocols can be drawn.

This paper makes three contributions in the
area of high-performance distributed computing.
First, it outlines a simple user-level
communication protocol that is shown to provide
excellent performance across both short- and
long-haul connections over high-performance,
high-delay networks. In particular, FOBS
achieved on the order of 90% of the available
bandwidth across both the short- and long-haul
connections. For the long-haul network, the
bandwidth obtained was 1.8 times higher than
that of an optimized TCP implementation.
Second, this paper provides a detailed evaluation
of performance as a function of the various
parameters that can be controlled at the user
level. Third, this research was conducted using
existing “off-the-shelf” connections across the
Abilene backbone network without specialized

1 We liked the name FOBS, but had a really hard
time coming up with a suitable expansion. The
best we could come up with was: eFficient un-
Ordered data transfer mechanism for distriButed
computationS, which is obviously quite a stretch
(and why it is in a footnote rather than the main
text).

or dedicated network links. Hence, the results
will be of interest to a large portion of the
distributed computing community.

The rest of this paper is organized as follows.
In Section 2, we discuss the most closely related
research efforts. In Section 3, we provide an
overview of FOBS and discuss the algorithms
employed by the data sender and data receiver.
In Section 4, we describe the experimental setup
for the comparison of FOBS and TCP. In Section
5, we present the results of this experimentation.
In Section 6, we provide our initial experiments
comparing FOBS with PSockets. In Section 7,
we present our conclusions and discuss ongoing
and future research.

2. Related Work

Obtaining all of the available bandwidth in a
high-delay, high-bandwidth network
environment is an important area of current
research, and two basic approaches are being
pursued. The first approach is focused on
improving the performance of the TCP protocol
itself for this network environment. The second
approach is aimed at developing techniques at
the application level that can circumvent the
performance problems associated with TCP. We
briefly describe each approach.

As discussed in [16,18,19], the size of the
TCP window is the single most important factor
in achieving good performance over high-
bandwidth, high-delay networks. To keep such
“fat” pipes full, the TCP window size should be
at least as large as the product of the bandwidth
and the round-trip delay. This requirement has
led to research in automatically tuning the size of
the TCP socket buffers at runtime [20]. Also, it
has led to the development of commercial TCP
implementations that allow the system
administrator to significantly increase the size of
the TCP window to achieve better performance
[18].

Another area of active research is the use of a
Selective Acknowledgment (SACK) mechanism
[11,22] rather than the standard cumulative
acknowledgment scheme. In this approach, the
receiving TCP sends to the sending TCP a
SACK packet that specifies exactly those packets
that have been received, allowing the sender to
retransmit only those segments that are missing.
Additionally, “fast retransmit” and “fast
recovery” algorithms have been developed that
allow a TCP sender to retransmit a packet before
the retransmission timer expires, and allows the
TCP sender to increase the size of its congestion

control window when three duplicate
acknowledgement packets are received without
intervening acknowledgements [11,22]. An
excellent source of information, detailing which
commercial and experimental versions of TCP
support which particular TCP extensions, may be
found on the Pittsburgh Supercomputing Center
Web pages [22].

At the user level, the most common approach
to circumventing the performance flaws in TCP
is to allocate multiple TCP streams for a given
data flow. This is the approach taken by
PSockets [16], the GridFTP protocol [1]
(developed by the Globus Project™ [21]) and in
[13]. This approach can significantly enhance
performance for two reasons. First, the
limitations on TCP window sizes are on a per
socket basis, and thus striping the data across
multiple sockets provides an aggregate TCP
buffer size that is closer to the (ideal size) of the
bandwidth times round-trip delay. Second, this
approach essentially circumvents the congestion
control mechanisms of TCP. That is, while some
TCP streams may be blocked because of the
congestion control mechanism, some other
streams are probably ready to fire. The larger the
number of TCP streams, the lower the
probability that all such streams will be blocked,
and hence the higher the probability that some
TCP stream will always be ready to fire.

The two most closely related user-level
approaches are the Reliable Blast UDP Protocol
(RUDP [9]) and SABUL [17]. In RUDP, all of
the data is blasted across the network without
any other communication between the data
sender and receiver. Then, after some timeout
period, the receiver sends a list of all missing
packets to the sender. The data sender then
retransmits all of the lost packets, and this cycle
is repeated until all of the data has been
successfully transferred. The primary difference
between FOBS and RUDP is the types of
networks for which the approach is intended.
RUDP is designed for high-performance quality-
of-service (QoS)-enabled networks with a very
low probability of packet loss. The approach
presented here (still being developed) is designed
for currently available (although non-QoS-
enabled) high-performance networks.

SABUL [17] employs a single UDP stream
for data transmission and a (single) TCP stream
for control information related to the state of the
data transfer. The primary difference between
FOBS and SABUL is the way packet loss is
interpreted and how such loss impacts the data-
transmission algorithm. In particular, SABUL

assumes that packet loss implies congestion and,
similar to TCP, reduces the sending rate to
accommodate such perceived congestion. Our
approach does not assume that packet loss is
necessarily caused by congestion and, further,
assumes that some packet loss is inevitable and
tolerable when sending packets over wide-area
networks.

3. FOBS

In this section, we provide a brief overview
of the FOBS protocol. A more detailed
description can be found in [4].

FOBS is a user-level, UDP-based data
transfer mechanism that leverages knowledge of
the characteristics of the data transfer itself to
significantly enhance performance. The
fundamental characteristic leveraged by FOBS is
the assumption that both the data sender and data
receiver have buffers large enough to hold all of
the data to be transferred. This assumption
allows FOBS to push to the limit the basic
concept of the “Large Window” extensions
developed for TCP: that is, the window size is
essentially infinite, since it spans the entire data
buffer (albeit at the user level). It also pushes to
the limit the idea of selective acknowledgments.
Given a pre-allocated receive buffer and constant
packet sizes, each data packet in the entire buffer
can be numbered. The data receiver can then
maintain a very simple data structure with one
byte (or even one bit) allocated per data packet,
where this data structure tracks the received/not
received status of every packet to be received.
This information can then be sent to the data-
sending process at a user-defined
acknowledgement frequency. Thus, the selective
acknowledgment window is also in a sense
infinite. That is, the data sender is provided with
enough information to determine exactly those
packets, across the entire data transfer, that have
not yet been received (or at least not received at
the time the acknowledgement packet was
created and sent).

 However, the assumption that all of the
data can be maintained in a user-level buffer
does not apply to the transfer of very large files.
Thus, in such a case a simple file transfer
mechanism is layered on top of FOBS, supplying
it with (user-defined) “chunks” of data that can
be buffered at the user level. FOBS then works
under the assumption that each chunk is a
complete data transfer, and applies the basic data
transfer algorithm for each such chunk. The data

receiver then writes the chunk to its appropriate
location on the disk (this is described in more
detail in [3]).

FOBS allocates one UDP connection for data
transmission and another UDP connection for
acknowledgment packets. Additionally, a single
TCP connection is opened to send a signal from
the receiver to the sender indicating that all of
the data has been successfully transferred.

3.1 Data-Sending Algorithm

The data-sending algorithm iterates over
three basic phases. In the first phase, some
algorithm is used to determine the number of
data packets to be placed onto the network
before looking for, and processing if available,
an acknowledgment packet. This is referred to as
a “batch-sending” operation, since all such
packets are placed on the network without
interruption (although the select system call is
used on the data-sending side to ensure adequate
buffer space for the packet). After a batch-send
operation, the data sender looks for, but does not
block for, an acknowledgment packet. Also, the
data sender looks for a completion signal

In the second phase of the algorithm,
the data sender looks for and, if available,
processes an acknowledgment packet. Processing
of an acknowledgment packet entails updating
the receive/not received status for each data
packet acknowledged, and determining the
number of packets that were received by the data
receiver between the time it created the previous
acknowledgement packet and the time it created
the current acknowledgment packet. This
information can then be used to determine the
number of packets to send in the next batch-send
operation. If no acknowledgment packet is
available, this information can also be used to
determine the number of packets to send in the
next batch-send operation. Note that a repeated
batch-sending operation with zero packets is
logically equivalent to blocking on an
acknowledgment.

In the third phase of the algorithm, the
data sender executes some user-defined
algorithm to choose the next packet, out of all
unacknowledged packets, to be placed onto the
network.

We studied several parameters for the
data sender. The first parameter studied was the
number of packets to be sent in the next batch-
send operation. Intuitively, one would expect
that the data sender should check for an
acknowledgment packet on a very frequent basis,

thus limiting the number of packets to be placed
onto the network in a given batch-send
operation. Our experimental results supported
this intuition, finding that two packets per batch-
send operation provided the best performance.
We therefore used this number in all subsequent
experiments.

We also performed extensive experimentation
to determine which particular packet, out of all
unacknowledged packets, should next be placed
on the network. We tried several algorithms, and,
in the end, the best approach (by far) was to treat
the data as a circular buffer. That is, the
algorithm never went back to retransmit a packet
that was not yet acknowledged, if there were any
packets that had not yet been sent for the first
time. Similarly, a given packet was retransmitted
for the n+1st time only if all other
unacknowledged packets had been retransmitted
n times.

As can be seen, the algorithm executed by the
sender is very greedy, continuing to transmit (or
retransmit) packets (without blocking) until is
receives the completion signal from the data
receiver specifying that all data has been
successfully received. Thus, a reasonable
question to ask is how wasteful of network
resources is this approach.

To answer this question, we maintained a
count of the total number of packets placed on
the network by the data sender. We defined
wasted resources as the total number of packets
sent, minus the number of packets that must be
transferred, divided by the number of packets
that must be transferred.

3.2. Data-Receiving Algorithm

The data receiver basically polls the network
for new packets and, when a packet becomes
available, incorporates it into its proper place
within the data buffer as determined by its
sequence number. The most important parameter
with respect to the data receiver is the number of
new packets received before generating and
sending an acknowledgement packet. The
frequency with which the data receiver sends
acknowledgment packets essentially determines
the level of synchronization between the two
processes. A small value (and thus a high level
of synchronization) implies that the data receiver
must frequently stop pulling packets off the
network to create and send acknowledgment
packets. Given that the algorithm is UDP based,
those packets missed while creating and sending

an acknowledgment will, in all likelihood, be
lost. A very high value, and thus a very low level
of synchronization, results in both the data
sender and data receiver spending virtually all of
their time placing packets on, and reading
packets off, the network. In Section 5, we show
the performance of the algorithm as a function of
the acknowledgment frequency.

4. Experimental Design

We investigated the performance
characteristics of (reasonably) large-scale data
transfers between various sites connected by the
Abilene backbone network. We investigated the
performance of TCP (with and without the Large
Window extensions) and compared this with the
performance and behavior of FOBS. One
connection tested was between Argonne National
Laboratory (ANL) and the Laboratory for
Computational Science and Engineering (LCSE)
at the University of Minnesota. The slowest link
in this path was 100 Mb/sec (from the desktop
computer to the external router at ANL). Also,
we performed a set of experiments between ANL
and the Center for Advanced Computing
Research (CACR) at the California Institute of
Technology. ANL is connected to both of these
sites across Abilene. The endpoints at both ANL
and LCSE were Intel Pentium3-based PCs
running Windows 2000 and using the Winsock2
API. We experimented with two endpoints at
CACR. One was an SGI Origin200 with two 225
Mhz MIPS R10000 processors, one gigabyte of
RAM, and a 100 Mb/sec interface card. The
other was a HP V2500 system with 64 CPUs
(440 Mhz PA-8500 64-bit RISC processors), a
100 Mb/sec external interface card, running the
HP-UX 11.10 operating system. The HP-UX
11.10 operating system automatically provides
window scaling and timestamps when the user
requests a socket buffer size greater than 64 KB.
The SGI Origin200 requires kernel-level access
to increase the TCP buffer size (which we did
not have). We also conducted experiments
between an SGI Origin2000 (with 49 processors
running IRIX 6.5) at NCSA and the Windows
box at LCSE. We were interested in this
connection because both endpoints had a Gigabit
Ethernet network interface card with an OC-12
connection to the Abilene backbone network.

The round-trip delay between ANL and
LCSE was measured (using traceroute) to be on
the order of 26 milliseconds, and we (loosely)
categorized this as a short-haul network. The
round-trip delay between ANL and CACR was

on the order of 65 milliseconds, which we (again
loosely) categorized as a long-haul network. The
transmitted data size for the experiments was 40
MB, where the data was divided into equal fixed-
sized packets of 1024 bytes (which was less than
the Maximum Transmission Unit (MTU) for all
network links considered). The metric of interest
was the percentage of the maximum available
bandwidth obtained by each approach.

5. Experimental Results

Figure 1 shows the performance of FOBS
across the short-haul connection (between ANL
and LCSE), and the long-haul connection
(between ANL and CACR). As noted,
performance was measured as the percentage of
the maximum available bandwidth obtained by
FOBS (where the 100 Mb/sec interface card was
the limiting factor). Performance is shown as a
function of the number of packets received
before triggering an acknowledgment packet. As
can be seen, FOBS provides excellent
performance across both the long- and short-haul
connections, achieving approximately 90% of
the available bandwidth across both network
connections.

Figure 2 provides a simple measurement of
the amount of network resources wasted because
of the greedy nature of the algorithm. This was
calculated as the total number of packets placed
on the network, minus the total number of
packets required to complete the data transfer,
divided by the total number of packets required.
The results are presented as a function of the
acknowledgment frequency. The results shown
are for the long-haul network and, as can be
seen, are relatively small representing
approximately 3% of the total data transferred.
Packet loss on the short-haul network was
essentially negligible and is not shown.

As noted, the limiting factor in these
experiments was the 100 Mb/sec network
interface card of the desktop machine at ANL.
We also performed a series of tests between an
SGI Origin2000 at NCSA and the Intel Pentium3
Windows 2000 box at LCSE (described in
Section 3), both of which had Gigabit Ethernet
connections with an OC-12 (622 Mb/sec) data
link to the Abilene backbone network. The SGI
Origin2000 had 48 R1000 processors with a total

memory of 14 GB running IRIX 6.5. We looked
at the percentage of the maximum available
bandwidth obtained as a function of the UDP
packet size. These results are shown in Figure 3.
 As can be seen, the size of the data packet
makes a tremendous difference in performance.
The performance of FOBS peaked out at
approximately 52% of the maximum available
bandwidth (40 MB/sec).

Table 1 shows the performance of TCP
across the short and long haul connections. As
discussed in Section 3, we experimented with
two endpoints at CACR: an SGI Origin200 (that
requires kernel-level access to increase the TCP
window size), and the HP V2500 system that
automatically provides window scaling when the
user requests a buffer size greater than 64KB.
As can be seen, the results obtained using the
Windows 2000 TCP implementation (across the
short haul network) were quite impressive,
providing approximately the same performance
as that of FOBS. Two factors combined to make
such performance possible. First, both endpoints
provided automated support for the Large
Window extensions to TCP. Secondly, there was
virtually no contention in the network and thus
the congestion control mechanisms of TCP were
not triggered.

As can be seen however, the performance of
TCP drops dramatically over the long haul
connections. The performance was significantly
better when both endpoints provided automatic
support for the Large Window extensions to
TCP, achieving on the order of 50% of the
available bandwidth. Without such support, this
performance decreased to approximately 10% of
the available bandwidth. The reason for this
dramatic drop in performance (even with the
Large Window extensions enabled) was most
likely caused by to the presence of some
contention in the network, which triggered
TCP’s very aggressive congestion control
mechanisms.

5. Comparison with PSockets

We were interested in comparing the
performance and behavior of FOBS with other
user-level approaches currently under
development. We chose PSockets for this
comparison primarily because multiple TCP
streams are often employed for GridFTP
applications. A secondary (but important) factor
was that the PSockets library was very easy to
install, build, and use. We conducted this set of

experiments between the SGI Origin2000 housed
at NCSA and the HP V2500 system located at
CACR (both are described in detail in Section 4).

The results are provided in Table 2. As can be
seen, FOBS was able to obtain 76% of the
available bandwidth while Psockets obtained
56% of this maximum. The results obtained for
PSockets are somewhat less than those reported
elsewhere [16]. Similarly, the performance of
FOBS was somewhat less than that observed
across the other connections tested. We assume
this reduced performance (in both cases) was a
function of increased contention for network
resources.

7. Conclusions and Future Research

 In this paper, we have described a simple,
user-level communication protocol designed for
a high-bandwidth, high-delay network
environment. We have shown that the algorithm
performs quite well, achieving approximately
90% of the available bandwidth on both short-
and long-haul connections over the Abilene
backbone network. Also, we have shown that the
algorithm achieves on the order of 50% of the
available bandwidth when the communication
endpoints have Gigabit Ethernet cards and an
OC-12 connection to the Abilene backbone
network. Further, we demonstrated that the
additional load placed on the network because of
the greedy nature of the algorithm is quite
reasonable, representing approximately 3% of
the total data transferred.
 Clearly much research remains to be done.
Perhaps most important, FOBS does not yet
provide congestion control. The current
implementation is a reasonable first cut, given
that the primary issue (at least currently) is one
of making efficient use of high-performance
networks rather than one of congestion in such
networks. Some form of congestion control is
needed however before the algorithm can
become generally used.

Two ways of addressing this issue are being
explored. First, we are looking at modifying
FOBS such that it switches to a high-
performance TCP algorithm when congestion in
the network is detected and when such
congestion is determined to be more than
temporary. Then, when the congestion appears to
have dissipated, FOBS could switch back to the
greedy implementation of the algorithm. Second,
we are investigating mechanisms to decrease the
greediness of FOBS when congestion in the

network is detected (and is of sufficient
duration).

We point out that research of this nature
poses several difficulties. In particular, since the
network conditions are constantly changing, it is
very difficult to find windows of time when two
or more approaches can be compared in a
meaningful way. For this reason, we are also
engaged in the development of simulation
models that can be used to compare the various
algorithms under similar (albeit simulated) loads
and traffic mixes.

Acknowledgments:

This work was supported in part by the
Mathematical, Information, and Computational
Sciences Division subprogram of the Office of
Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract W-31-109-
Eng-38 and by the National Science Foundation.

The authors wish to thank Vinod Kannan,
Guruprasad Kora, and Ramya Krishnamurthy, all
of whom are Masters students at IIT, for their
work on this project. We also wish to thank Bill
Nickless, Experimental Systems Engineer within
the MCS division, for his help and support
throughout the project.

References

[1] Allcock, B., Bester J., Bresnahan, J.,
Chervenak, A., Foster, I., Kesselman, C.
Meder, S., Nefedova, V., Quesnet, D., and S.
Tuecke. Secure, Efficient Data Transport
and Replica Management for High-
Performance Data-Intensive Computing.
Preprint ANL/MCS-P871-0201, Feb. 2001.

[2] Allman, M., Paxson, V., and W.Stevens. RFC
2581.TCP Congestion Control., April 1999.

[3] Dickens, P. A High Performance File
Transfer Mechanism for Grid Computing. To
appear in The 2002 Conference on Parallel
and Distributed Processing Techniques and
Applications (PDPTA).

[4] Dickens, P., Gropp, W. and P. Woodward.
High Performance Wide Area Data Transfers
Over High Performance Networks. In the
2002 International Workshop on
Performance Modeling, Evaluation, and
Optimization of Parallel and Distributed
Systems.

[5] Feng W., and P. Tinnakornsrisuphap. The
Failure of TCP in High-Performance
Computational Grids. In Proceedings of the
SuperComputing 2000 (SC2000).

[6] Hobby, R. Internet2 End-to-End Performance
Initiative (or Fat Pipes Are Not Enough).
URL: http//www.internet2.org.

[7] Irwin, B. and M. Mathis. Web100:
Facilitating High-Performance Network Use.
White Paper for the Internet2 End-to-End
Performance Initiative.
URL:http://www.internet2.edu/e2epi/we
b02/p_web100.shtml

[8] Jacobson, V., Braden, R., and D. Borman.
TCP Extensions for high performance. RFC
1323, May 1992.

[9] Leigh, J. et al. Adaptive Networking for Tele-
Immersion. In: Proceedings of the Immersive
Projection Technology/Eurographics Virtual
Environments Workshop (IPT/EGVE),
Stuttgart, Germany, 05/16/01-05/18/01.

[10] MacDonald and W. Barkley. Microsoft
Windows 2000 TCP/IP Implementation
Details. White Paper, May 2000.

[11] Mathis, M., Mahdavi, J., Floyd, S. and A.
Romanow. TCP Selective Acknowledgement
Options. RFC 2018.

[12] Mogul, J. and S. Deering, "Path MTU
Discovery", RFC 1191,

 November 1990.

[13] Ostermann, S., Allman, M., and H. Kruse. An
Application-Level solution to TCP’s Satellite
Inefficiencies. Workshop on Satellite-based
Information Services (WOSBIS), November,
1996.

[14] J. Postel, Transmission Control Protocol,
RFC793, September 1981.

[15] Semke, J., Jamshid Mahdavi, J., and M.
Mathis, Automatic TCP Buffer Tuning,
Computer Communications Review, a
publication of ACM SIGCOMM, volume 28,
number 4, October 1998].

[16] Sivakumar, H., Bailey, S., and R. Grossman.
PSockets: The Case for Application-level
Network Striping for Data Intensive
Applications using High Speed Wide Area
Networks. In Proceedings of Super
Computing 2000 (SC2000).

http://www.internet2.edu/e2epi/web02/p_web100.shtml
http://www.internet2.edu/e2epi/web02/p_web100.shtml

[17] Sivakumar, H., Mazzucco, M., Zhang, Q., and
R. Grossman. Simple Available Bandwidth
Utilization Library for High Speed Wide Area
Networks. Submitted to Journal of
SumperComputing

[18] URL:
http://www.psc.edu/networking/perf_tune.ht
ml#intro. Enabling High Performance Data
Transfers on Hosts: (Notes for Users and
System Administrators). Pittsburgh
Supercomputing Center.

[19] URL:
http://dast.nlanr.net/Articles/GettingStarted/T
CP_window_size.html. National Laboratory
for Advanced Networking Research.

[20] URL:
http://dast.nlanr.net/Projects/Autobuf_v1.0/au
totcp.html. Automatic TCP Window Tuning

and Applications. National Laboratory for
Advanced Networking Research.

[21] URL: http://www.globus.org. The Globus
Project.

[22] URL:
http://www.psc.edu/networking/all_sack.
html. List of sack implementations,
Pittsburgh Supercomputing Center.

[23] URL: http://www.internet2.org. The Internet2
project.

[24] URL: http://www.internet2.edu/abilene. The
Abilene backbone network.

[25] URL: http://www.vbns.net. The Very High
Performance Backbone Network Service.

http://www.psc.edu/networking/perf_tune.html#intro
http://www.psc.edu/networking/perf_tune.html#intro
http://dast.nlanr.net/Projects/Autobuf_v1.0/autotcp.html
http://dast.nlanr.net/Projects/Autobuf_v1.0/autotcp.html
http://www.psc.edu/networking/all_sack.html
http://www.psc.edu/networking/all_sack.html
http://www.internet2.org/

Figures

Figure 1. Performance of FOBS across both short and long haul high-performance network
connections. Performance is measured as the percentage of maximum bandwidth achieved and is
shown as a function of number of packets received before triggering an acknowledgement packet.

Figure 2. Amount of wasted network resources as a function of the number of packets received
before triggering an acknowledgment packet. The amount of waste was calculated as the total
number of packets required to complete the transfer divided by the total number of packets actually
sent.

0
0.2
0.4
0.6
0.8

1

100 500 1000 1500 2000 2500 3000

Acknowledgement Frequency

Pe
rc

en
ta

ge
 o

f
M

ax
im

um
 A

va
ila

bl
e

B
an

dw
id

th Long Haul
Connection
Short Haul
Connection

0

0.01

0.02

0.03

0.04

100 500 1000 1500 2000 2500 3000

Acknowledgement Frequency

W
as

te
d

N
et

w
or

k
R

es
ou

rc
es

Figure 3. Percentage of maximum bandwidth obtained over a short haul connection where the
communication endpoints both had Gigabit Ethernet network interface cards and an OC-12
connection to the Abilene backbone network. Performance is shown as a function of the UDP packet
size.

Table 1. Percentage of the maximum bandwidth obtained by TCP with and without the Large
Window extensions.

 __

Network Connection Percentage of the Maximum
Available Bandwidth

 __

Short Haul with LWE 86%

Long Haul with LWE 51%

Long Haul without LWE 11%
 __

0%
10%
20%
30%
40%
50%
60%

1K 2K 4K 8K 16K 32K

Packet Size in Bytes

Pe
rc

en
ta

ge
 o

f M
ax

im
um

A

va
ila

bl
e

B
an

dw
id

th

Gigabit Interface Card

Table 2. Performance of FOBS with that of PSockets across one high-performance network
connection.

 Performance Metric PSockets FOBS

Maximum Bandwidth Obtained 56% 76%

Wasted Network Resources ___ 2%

Optimal Number of Sockets 20 ___
