
TOWARD UNDERSTANDING

SOFT FAULTS IN HIGH PERFORMANCE

CLUSTER NETWORKS

Jeffrey J. Evans,1 Seongbok Baik,1 Cynthia S. Hood,1 William Gropp2

1Department of Computer Science

Illinois Institute of Technology

10 West 31st St.

Chicago, Illinois 60616

Email: {evanjef, sbbaik, hood}@iit.edu

2Mathematics and Computer Science Division

Argonne National Laboratory

9700 South Cass Avenue

Argonne, Illinois 60439

Email: gropp@mcs.anl.gov

Abstract: Fault management in high performance cluster networks has been focused on
the notion of hard faults (i.e., link or node failures). Network degradations
that negatively impact performance but do not result in failures often go
unnoticed. In this paper, we classify such degradations as soft faults. In
addition, we identify consistent performance as an important requirement in
cluster networks. Using this service requirement, we describe a comprehensive
strategy for cluster fault management.

Keywords: Cluster, fault management, interconnection networks, soft faults

1. Introduction and Motivation

Cluster computing systems have been rapidly evolving over the past decade.
A variety of system architectures exist ranging from tightly coupled proprietary
systems to loosely coupled commodity-based systems. The relatively low cost
of commodity-based systems along with the availability of public domain soft-
ware makes them an attractive option. In research environments, clusters are
replacing supercomputers. The processing power of multiple networked PCs or
workstations is utilized through parallel computing software. Computational
clusters are used to tackle complex problems that require large amounts of
computing resources.

Our research focuses on computational clusters. Paramount here is the con-
cept of a “coordinated team” of nodes and their communication environment
working together as a single entity. One of the key elements of a computa-
tional cluster system is the interconnection mechanism. Since the nodes do not
physically share memory, they rely on message passing through the network.
In order to achieve good performance in message-passing multicomputer sys-
tems, consistently low latency and high bandwidth are required. Given these
stringent requirements on the network, effective fault management is critical.

The negative impact of performance degradation, which we term soft faults,
is often greater than that of hard faults. Soft faults are performance degrada-



Evans, Baik, Hood, Gropp

tions requiring corrective action. The requirement of corrective action is then
a function of the system performance expected or assumed by an application.

For example, when a user wishes to execute an application, a request for
service is submitted to a centralized scheduler. The user requests a subset
of compute nodes for a finite period of time, thus requiring the user to know
approximately how long the job will take to run. If the application execution
happens to run longer than the user expected (or guessed), a timeout results.
The application is terminated by the scheduler and the user may or may not
receive useful data - a waste of time and resources. Conversely, if the user
reserves compute nodes conservatively and the application executes in a shorter
period of time (i.e., no faults or optimum performance), resources are again
wasted (unused), since the compute nodes were conservatively reserved.

Inconsistent performance can cause scheduling problems at many different
levels. Soft faults may cause synchronization problems when the impact of a
network fault accumulates through the run. Many variables affect application
performance in computational cluster networks, and further investigation is
required to fully understand the impact of network faults. The area of soft
fault (or degraded service) management in cluster environments will grow in
importance as the area of computational Grids and Grid computing evolves.

To better understand performance degradation in the context of clusters,
one must consider performance relationships in both the horizontal and verti-
cal planes. The horizontal plane includes the causal relationships that occur
between “peers” at any layer (physical, link, kernel, application, etc.). The ver-
tical plane includes causal relationships between layers, adjacent or not, all the
way up through the operating system and into the applications themselves. We
are studying performance degredation on the Chiba City cluster [6] at Argonne
National Laboratory.

2. Related Work

Considerable effort both in commercial products and in the research commu-
nity has been devoted to traditional “hard” fault management issues in cluster
environments. There have also been efforts exploring performance issues in
parallel program execution. These efforts include evaluation of network effects
[2, 7], performance analysis using application and kernel code instrumentation
[4, 9, 11], performance prediction [8, 10], and program steering [3, 13]. Addi-
tionally, adaptive techniques have been explored for predictive signaling and
control in cluster environments for performance management [12] and in highly
distributed networks for use in fault management [5]. Our focus, however, is on
soft faults. Specifically, we wish to understand the mechanisms behind network
contributions to soft faults and to identify ways to signal or ultimately control
such faults.

3. The Problem of Cluster Fault Management

As high-performance systems, clusters require strong performance from each
component of the system, including the application, the operating system, and
the communication network itself. Additionally, when determining how to dis-
tribute processing across the nodes of a cluster, parallel computing software



Soft Faults in High Performance Cluster Networks

assumes consistent network performance. Therefore, the type of service re-
quired from cluster interconnection networks is different from that for tradi-
tional best effort or telephone networks. In best effort networks, applications
tolerate variations in network performance, and real-time fault management
primarily focuses on hard faults. In telephone networks, faults are tightly cou-
pled to voice service. In clusters, however, good system performance is required
to execute a large-scale application in a timely fashion. Hence, network per-
formance degradations (soft faults) need to be addressed along with link and
node failures (hard faults).

This distinction is necessary because of the time scale of action. Once de-
tected, hard faults are corrected. Soft faults, however, are generally tolerated
in the short term and may be monitored for longer-term trends. The goal
of cluster fault management is to address both hard and soft faults to main-
tain consistent network performance. The execution of a parallel application
is complex by definition. Performance tuning to achieve the optimum balance
between computation and communication for a given data set can be both time
consuming and unproductive. Tuning models depend on the computation and
communication speeds of the hardware and software as well as the specifics
of the application data set. Another major factor that is more difficult to
incorporate into the models is run-time environment.

Cluster fault management can be used to maintain good system perfor-
mance in two different ways. First, fault management techniques can detect
and correct soft faults, thereby maintaining consistent network performance.
In addition, when correction is not possible, feedback can be provided to the
parallel computing software, allowing a more accurate description of current
network conditions to be reflected in the modeling.

4. Summary and Ongoing Work

This paper has described cluster fault management in terms of both hard
and soft faults. We defined a soft fault as a degradation resulting in inconsistent
performance. Network behaviors impacting performance include localized hot
spots, dropped packets, retransmissions or unordered messages, routing effects,
and delayed transmissions because of flow control. Ongoing research is in two
directions, (1) understanding the propagation or impact of soft faults and (2)
developing mechanisms to detect and correct soft faults.

To better understand the impact of soft faults on cluster applications and
other system components, we are currently running experiments on the Chiba
City cluster at Argonne National Laboratory. In area (1), we are exposing
horizontal and vertical performance relationships that can be cast into classes
of soft faults. Once cast, these relationships can be further explored to better
understand their causes, propogation and impact on the overall cluster system.
In area (2), we are developing new adaptive routing techniques for Myrinet
interconnection networks [1]. Myrinet uses source routing, with minimal intel-
ligence and monitoring within the network, so existing techniques cannot be
used.

Our next step is to extend low level network monitoring capabilities to better
understand component issues. These tools will be used in conjunction with



Evans, Baik, Hood, Gropp

system and application monitoring tools to enhance our understanding and
develop strategies for adaptive cluster management.

Acknowledgments

This work was supported in part by the U.S. Department of Energy, under
Contract W-31-109-Eng-38 and NSF 9984811.

References

[1] S. Baik, C. Hood, and W. Gropp. Prototype of am3: Active mapper and monitoring
module for the Myrinet environment. In Proceedings of the HSLN Workshop, Nov.
2002.

[2] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,
and T. Eicken. Logp: Towards a realistic model of parallel computation. In Proceed-
ings of the Fourth ACM SIGPLAN Symposium on Princples and Practices of Parallel
Programming, May 1993.

[3] W. Gu, G. Eisenhauer, and K. Schwan. Falcon: On-line moniroting and steering of paral-
lel programs. In Ninth International Conference on Parallel and Distributed Computing
and Systems (PDCS’97), Oct. 1997.

[4] J. Hollingsworth and B. Miller. Dynamic control of performance monitoring on large
scale parallel systems. In International Conference on Supercomputing, July 1993.

[5] C. S. Hood and C. Ji. Proactive network-fault detection. IEEE Transactions on Reli-
ability, 46(3):333–341, September 1997.

[6] Argonne National Laboratory. Chiba City, the Argonne scalable cluster, 1999.
http://www-unix.mcs.anl.gov/chiba/.

[7] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson. Effects of communication
latency, overhead, and bandwidth in a cluster architecture. In Proceedings of the 24th
Annual International Symposium on Computer Architecture, pages 85–97, June 1997.

[8] C. Mendes and D. Reed. Performance stability and prediction. In IEEE International
Workshop on High Performance Computing (WHPC’94), March 1994.

[9] D. M. Ogle, K. Schwan, and R. Snodgrass. Application-dependent dynamic monitoring
of distributed and parallel systems. IEEE Transactions on Parallel and Distributed
Systems, 4(7):762–778, July 1993.

[10] J. M. Orduna, F. Silla, and J. Duato. A new task mapping technique for communication-
aware scheduling strategies. In International Conference on Parallel Processing Work-
shops, pages 349–354, 2001.

[11] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz, and L. F.
Tavera. Scalable performance analysis: The pablo performance analysis environment.
In Proceedings of the IEEE Computer Society Scalable Parallel Libraries Conference,
October 1993.

[12] J. Vetter and D. Reed. Managing performance analysis with dynamic projection pursuit.
In Proceedings of SC’99, November 1999.

[13] J. Vetter and K. Schwan. Progress: A toolkit for interactive program steering. In
Proceedings of the International Conference on Parallel Processing, August 1995.


