
Optimizing the Synchronization Operations in MPI
One-Sided Communication∗

Rajeev Thakur William Gropp Brian Toonen
Mathematics and Computer Science Division

Argonne National Laboratory
9700 S. Cass Avenue

Argonne, IL 60439, USA

{thakur, gropp, toonen }@mcs.anl.gov

Abstract

One-sided communication in MPI requires the use of one of three different synchro-

nization mechanisms, which indicate when the one-sided operation can be started and when

the operation is completed. Efficient implementation of the synchronization mechanisms is

critical to achieving good performance with one-sided communication. Our performance

measurements, however, indicate that in many MPI implementations, the synchronization

functions add significant overhead, resulting in one-sided communication performing much

worse than point-to-point communication for short- and medium-sized messages. In this

paper, we describe our efforts to minimize the overhead of synchronization in our imple-

mentation of one-sided communication in MPICH2. We describe our optimizations for

all three synchronization mechanisms defined in MPI: fence, post-start-complete-wait, and

lock-unlock. Our performance results demonstrate that, for short messages, MPICH2 per-

forms six times faster than LAM for fence synchronization and 50% faster for post-start-

complete-wait synchronization, and it performs more than twice as fast as Sun MPI for all

three synchronization methods.

∗This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram

of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under

Contract W-31-109-ENG-38.

1 Introduction

MPI defines one-sided communication operations that allow users to directly read from or write

to the memory of a remote process [12]. One-sided communication both is convenient to use

and has the potential to deliver higher performance than regular point-to-point (two-sided) com-

munication, particularly on networks that support one-sided communication natively, such as

InfiniBand and Myrinet. One-sided communication in MPI requires the use of one of three syn-

chronization mechanisms: fence, post-start-complete-wait, or lock-unlock. The synchronization

mechanism defines the time at which the user can initiate one-sided communication and the time

when the operations are guaranteed to be completed. The true cost of one-sided communication,

therefore, must include the time taken for synchronization. An unoptimized implementation of

the synchronization functions may perform more communication and synchronization than nec-

essary (such as a barrier), which can adversely affect performance, particularly for short and

medium-sized messages.

To determine how the different synchronization mechanisms perform in existing MPI imple-

mentations, we used a test program that performs nearest-neighbor ghost-area exchange, a com-

munication pattern common in many scientific applications such as PDE simulations. We wrote

four versions of this program—using point-to-point communication (isend/irecv) and using one-

sided communication with fence, post-start-complete-wait, and lock-unlock synchronization—

and ran them on an IBM SP with IBM MPI, on a Sun SMP with Sun MPI, and on a fast-ethernet-

connected Linux cluster with LAM [11]. We measured the time taken for a single communica-

tion step (each process exchanges data with its four neighbors) by doing the step a number of

times and calculating the average. Figure 1 shows a template of the fence version of the test; the

other versions are similar.

for (i=0; i<ntimes; i++) {

MPI_Win_fence(MPI_MODE_NOPRECEDE, win);

for (j=0; j<nbrs; j++) {

MPI_Put(sbuf + j*n, n, MPI_INT, nbr[j], j, n, MPI_INT, win);

}

MPI_Win_fence(MPI_MODE_NOSTORE | MPI_MODE_NOPUT |

MPI_MODE_NOSUCCEED, win);

}

Figure 1: Fence version of the test

1

0.1

1

10

16 64 256 1024 4096 16384 65536 262144

Ti
m

e
(m

s)

message size (bytes)

IBM MPI on SP, 48 processes on six 8-way SMPs

pt2pt
fence
pscw
lock

0.01

0.1

1

10

16 64 256 1024 4096 16384 65536 262144

Ti
m

e
(m

s)

message size (bytes)

Sun MPI, 24 processes on a single Sun SMP

pt2pt
fence
pscw
lock

0.1

1

10

100

16 64 256 1024 4096 16384 65536 262144

Ti
m

e
(m

s)

message size (bytes)

LAM, 25 processes, Linux cluster, fast ethernet

pt2pt
fence
pscw

Figure 2: Performance of IBM MPI, Sun MPI, and LAM for a nearest-neighbor ghost-area

exchange test

2

The performance results are shown in Figure 2. With IBM MPI on an SP, one-sided commu-

nication is almost two orders of magnitude slower than point-to-point (pt2pt) for short messages

and remains significantly slower until messages get larger than 256 KB. With Sun MPI on a

shared-memory SMP, all three one-sided versions are about six times slower than the point-to-

point version for short messages. With LAM on a Linux cluster connected with fast ethernet, for

short messages, post-start-complete-wait (pscw) is about three times slower than point-to-point,

and fence is about 18 times slower than point-to-point.1 As shown in Figure 1, we pass appropri-

ate assert values toMPI Win fence so that the MPI implementation can optimize the function.

Since LAM does not support asserts, we commented them out when using LAM. At least some

of the poor performance of LAM with fence can be attributed to not taking advantage of asserts.

We observed similar results for runs with different numbers of processes on all three im-

plementations. Clearly, the overhead associated with synchronization significantly affects the

performance of these implementations. Other researchers [6] have found similarly high over-

heads in their experiments with four MPI implementations: NEC, Hitachi, Sun, and LAM.

Our goal in the design and implementation of one-sided communication in our MPI imple-

mentation, MPICH2, has been to minimize the amount of additional communication and syn-

chronization needed to implement the semantics defined by the synchronization functions. We

particularly avoid using a barrier anywhere. As a result, we are able to achieve much higher

performance than do other MPI implementations. We describe our optimizations and our imple-

mentation in this paper. This paper is an extended version of the work described in [16].

The rest of the paper is organized as follows. In Section 2, we describe related work in the

area of one-sided communication. In Section 3, we explain the semantics of the three synchro-

nization mechanisms. In Section 4, we describe our optimized implementation of the synchro-

nization mechanism. In Section 5, we present performance results. In Section 6, we conclude

with a brief discussion of future work.

2 Related Work

One-sided communication as a programming paradigm was made popular initially by the SHMEM

library on the Cray T3D and T3E [8], the BSP library [7], and the Global Arrays library [15]. Af-

ter the MPI-2 Forum defined an interface for one-sided communication in MPI, several vendors

and a few research groups implemented it, but, as far as we know, none of these implementa-

tions specifically optimizes the synchronization overhead. For example, the implementations

1LAM does not support lock-unlock synchronization.

3

of one-sided communication for Sun MPI by Booth and Mourão [4] and for the NEC SX-5 by

Träff et al. [17] use a barrier to implement fence synchronization. Other efforts at implementing

MPI one-sided communication include the implementation for InfiniBand networks by Jiang et

al. [9, 10], for a Windows implementation of MPI (WMPI) by Mourão and Silva [14], for the

Fujitsu VPP5000 vector machine by Asai et al. [1], and for the SCI interconnect by Worringen

et al. [19]. Mour̃ao and Booth [13] describe issues in implementing one-sided communication

in an MPI implementation that uses multiple protocols, such as TCP and shared memory.

3 One-Sided Communication in MPI

In MPI, the memory that a process allows other processes to access via one-sided communica-

tion is called awindow. Processes specify their local windows to other processes by calling the

collective functionMPI Win create . The three functions for one-sided communication are

MPI Put , MPI Get , andMPI Accumulate . MPI Put writes to remote memory,MPI Get

reads from remote memory, andMPI Accumulate does a reduction operation on remote mem-

ory. All three functions are nonblocking: They initiate but do not necessarily complete the one-

sided operation. These functions are not sufficient by themselves because one needs to know

when a one-sided operation can be initiated (that is, when the remote memory is ready to be

read or written) and when a one-sided operation is guaranteed to be completed. To specify these

semantics, MPI defines three different synchronization mechanisms.

3.1 Fence Synchronization

Figure 3a illustrates the fence method of synchronization (without the syntax).MPI Win fence

is collective over the communicator associated with the window object. A process may issue one-

sided operations after the first call toMPI Win fence returns. The next fence completes any

one-sided operations that this process issued after the preceding fence, as well as the one-sided

operations other processes issued that had this process as the target. The drawback of the fence

method is that if only small subsets of processes are actually communicating with each other,

such as groups of nearest neighbors in our ghost-area exchange test program, the collective-

ness of the fence function over the entire communicator results in unnecessary synchronization

overhead.

4

Process 0 Process 1
MPI_Win_fence(win)
MPI_Put(1)
MPI_Get(1)
MPI_Win_fence(win)

MPI_Win_fence(win)
MPI_Put(0)
MPI_Get(0)
MPI_Win_fence(win)

a. Fence synchronization

Process 0 Process 1 Process 2
MPI_Win_post(0,2)

MPI_Win_start(1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_complete(1)

MPI_Put(1)
MPI_Win_start(1)

MPI_Get(1)
MPI_Win_complete(1)

MPI_Win_wait(0,2)

b. Post-start-complete-wait synchronization

Process 0 Process 1 Process 2
MPI_Win_create(&win)
MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)
MPI_Win_free(&win)

MPI_Win_create(&win)

MPI_Win_free(&win)

MPI_Win_create(&win)
MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)
MPI_Win_free(&win)

c. Lock-unlock synchronization

Figure 3: The three synchronization mechanisms for one-sided communication in MPI. The

numerical arguments indicate the target rank.

3.2 Post-Start-Complete-Wait Synchronization

To avoid the drawback of fence, MPI defines a second synchronization method in which only

subsets of processes need to synchronize, as shown in Figure 3b. A process that wishes to

expose its local window to remote accesses callsMPI Win post , which takes as argument an

MPI Group object that specifies the set of processes that will access the window. A process

that wishes to perform one-sided communication callsMPI Win start , which also takes as

argument anMPI Group object that specifies the set of processes that will be the target of

one-sided operations from this process. After issuing all the one-sided operations, the origin

process callsMPI Win complete to complete the operations at the origin. The target calls

5

MPI Win wait to complete the operations at the target.

3.3 Lock-Unlock Synchronization

In the lock-unlock synchronization method, the origin process callsMPI Win lock to ob-

tain either shared or exclusive access to the window on the target, as shown in Figure 3c.

MPI Win lock is not required to block until the lock is acquired, except when the origin and

target are one and the same process. After issuing the one-sided operations, the origin calls

MPI Win unlock . WhenMPI Win unlock returns, the one-sided operations are guaranteed

to be completed at the origin and the target. The target process does not make any synchro-

nization call. For this synchronization method, an implementation is allowed to restrict the use

of one-sided communication to windows in memory that has been allocated with the function

MPI Alloc mem.

4 Implementing MPI One-Sided Communication

We describe our implementation of one-sided communication in MPICH2, particularly how we

have optimized the implementation of the synchronization functions. Our current implementa-

tion of one-sided communication is layered on the same lower-level communication abstraction

we use for point-to-point communication, called CH3 [2]. CH3 uses a two-sided communication

model in which the sending side sends packets, followed optionally by data, and the receiving

side explicitly posts receives for packets and, optionally, data. The content and interpretation of

the packets are decided by the upper layers. To implement one-sided communication, we have

simply added new packet types. So far, CH3 has been implemented robustly on top of TCP

and shared memory, and experimental implementations exist for GASNet [3] and InfiniBand.

Therefore, our implementation of one-sided communication runs on all these devices.

We use the following general approach in implementing the synchronization functions: For

all three synchronization methods, we do almost nothing in the first synchronization call; do

nothing in the calls to put, get, or accumulate other than queuing up the requests locally; and

instead do everything in the second synchronization call. This approach allows the first synchro-

nization call to return immediately without blocking, reduces or eliminates the need for extra

communication in the second synchronization call, and offers the potential for communication

operations to be aggregated and scheduled efficiently as in BSP [7]. We describe our implemen-

tation in detail below.

6

4.1 Fence Synchronization

An implementation of fence synchronization must take into account the following semantics: A

one-sided operation cannot access a process’s window until that process has called fence, and

the next fence on a process cannot return until all processes that need to access that process’s

window have completed doing so.

A näıve implementation of fence synchronization could be as follows. At the first fence,

all processes do a barrier so that everyone knows that everyone else has called fence. Puts,

gets, and accumulates can be implemented as either blocking or nonblocking operations. In the

second fence, after all the one-sided operations have been completed, all processes again do a

barrier to ensure that no process leaves the fence before other processes have finished accessing

its window. This method requires two barriers, which can be quite expensive.

In our implementation, we avoid the two barriers completely. In the first call to fence, we do

nothing. For the puts, gets, and accumulates that follow, we simply queue them up locally and do

nothing else, with the exception that any one-sided operation whose target is the origin process

itself is performed immediately by doing a simple memory copy or local accumulate. In the

second fence, each process goes through its list of queued one-sided operations and determines,

for every other processi, whether any of the one-sided operations havei as the target. This

information is stored in an array, such that a 1 in theith location of the array means that one

or more one-sided operations are targeted to processi, and a 0 means no one-sided operations

are targeted to that process. All processes now do a reduce-scatter sum operation on this array:

Processi gets the result of the summation of theith element of the array on all processes, as

in MPI Reduce scatter . As a result, each process now knows how many processes will

be performing one-sided operations on its window, and this number is stored in a counter in

the MPI Win object. Each process is now free to perform the data transfer for its one-sided

operations; it needs only to ensure that the window counter at the target gets decremented when

all the one-sided operations from this process to that target have been completed.

A put is performed by sending a put packet containing the address, count, and datatype

information for the target. If the datatype is a derived datatype, an encapsulated version of the

derived datatype is sent next. Then follows the actual data. The MPI progress engine on the

target receives the packet and derived datatype, if any, and then directly receives the data into

the correct memory locations. No rendezvous protocol is needed for the data transfer because

the origin has already been authorized to write to the target window. Gets and accumulates are

implemented similarly.

7

For the last one-sided operation, the origin process sets a field in the packet header indicating

that it is the last operation. The target therefore knows to decrement its window counter after this

operation has completed at the target. When the counter reaches 0, it indicates that all remote

processes that need to access the target’s window have completed their operations, and the target

can therefore return from the second fence. This scheme of decrementing the counter only on

the last operation assumes that data delivery is ordered, which is a valid assumption for the

networks we currently support. On networks that do not guarantee ordered delivery, a simple

sequence-numbering scheme can be added to achieve the same effect.

We have thus eliminated the need for a barrier in the first fence and replaced the barrier at the

endof the second fence by a reduce-scatter at thebeginningof the second fence before any data

transfer. After that, all processes can do their communication independently and return when

they are done.

4.2 Post-Start-Complete-Wait Synchronization

An implementation of post-start-complete-wait synchronization must take into account the fol-

lowing semantics: A one-sided operation cannot access a process’s window until that process

has calledMPI Win post , and a process cannot return fromMPI Win wait until all processes

that need to access that process’s window have completed doing so and calledMPI Win complete .

A näıve implementation of this synchronization could be as follows.MPI Win start

blocks until it receives a message from all processes in the target group indicating that they have

called MPI Win post . Puts, gets, and accumulates can be implemented as either blocking

or nonblocking functions.MPI Win complete waits until all one-sided operations initiated

by that process have completed locally and then sends a done message to each target process.

MPI Win wait on the target blocks until it receives the done message from each origin process.

Clearly, this method involves a great deal of synchronization.

We have eliminated most of this synchronization in our implementation as follows. In

MPI Win post , if the assertMPI MODENOCHECKis not specified, the process sends a zero-

byte message to each process in the origin group to indicate thatMPI Win post has been

called. It also sets the counter in the window object to the size of this group. As in the fence

case, this counter will get decremented by the completion of the last one-sided operation from

each origin process.MPI Win wait simply blocks and invokes the progress engine until this

counter reaches zero.

On the origin side, we do nothing inMPI Win start . All the one-sided operations follow-

8

ingMPI Win start are simply queued up locally as in the fence case. InMPI Win complete ,

the process first waits to receive the zero-byte messages from the processes in the target group.

It then performs all the one-sided operations exactly as in the fence case. The last one-sided op-

eration has a field set in its packet that causes the target to decrement its counter on completion

of the operation. If an origin process has no one-sided operations destined to a target that was

part of the group passed toMPI Win start , it still needs to send a packet to that target for

decrementing the target’s counter.MPI Win complete returns when all its operations have

locally completed.

Thus the only synchronization in this implementation is the wait at the beginning of

MPI Win complete for a zero-byte message from the processes in the target group, and this

too can be eliminated if the user specifies the assertMPI MODENOCHECKto MPI Win post

andMPI Win start (similar toMPI Rsend).

4.3 Lock-Unlock Synchronization

Implementing lock-unlock synchronization when the window memory is not directly accessible

by all origin processes requires the use of an asynchronous agent at the target to cause progress

to occur, because one cannot assume that the user program at the target will call any MPI func-

tions that will cause progress periodically. Our design for the implementation of lock-unlock

synchronization involves the use of a thread that periodically wakes up and invokes the MPI

progress engine if it finds that no other MPI function has invoked the progress engine within

some time interval.2 If the progress engine had been invoked by other calls to MPI, the thread

does nothing. This thread is created only whenMPI Win create is called and if the user did

not pass an info object toMPI Win create with the keyno locks set totrue (indicating

that he will not be using lock-unlock synchronization).

We implement lock-unlock synchronization as follows. InMPI Win lock , we do nothing

but queue up the lock request locally and return immediately. The one-sided operations are also

queued up locally. All the work is done inMPI Win unlock . For the general case where there

are multiple one-sided operations, we implementMPI Win unlock as follows as illustrated in

Figure 4. The origin sends a “lock-request” packet to the target and waits for a “lock-granted”

reply. When the target receives the lock request, it either grants the lock by sending a lock-

2Since the MPICH2 progress engine is not yet fully thread safe, we do not use this separate thread in the imple-

mentation yet. The main thread on the target must make calls to MPI functions for progress to occur. For example,

the target could callMPI Win free , which will block until all one-sided communication has completed.

9

lock request

lock granted

done (if no Gets)

MPI_Win_unlock()

Origin Target

puts/gets/accumulates

Figure 4: Implementing lock-unlock synchronization when there are multiple one-sided opera-

tions

granted reply to the origin or queues up the lock request if it conflicts with the existing lock on the

window. When the origin receives the lock-granted reply, it performs the one-sided operations

exactly as in the other synchronization modes. The last one-sided operation, indicated by a field

in the packet header, causes the target to release the lock on the window after the operation has

completed. Therefore, no separate unlock request needs to be sent from origin to target.

The semantics specify thatMPI Win unlock cannot return until the one-sided operations

are completed at both origin and target. Therefore, if the lock is a shared lock and none of the

operations is a get, the target sends an acknowledgment to the origin after the last operation has

completed. If any one of the operations is a get, we reorder the operations and perform the get

last. Since the origin must wait to receive data, no additional acknowledgment is needed. This

approach assumes that data transfer in the network is ordered. If not, an acknowledgment is

needed even if the last operation is a get. If the lock is an exclusive lock, no acknowledgment is

needed even if none of the operations is a get, because the exclusive lock on the window prevents

another process from accessing the data before the operations have completed.

4.3.1 Optimization for Single Put/Get/Accumulate Operations

If the lock-unlock is for a single short operation and predefined datatype at the target, we send

the put/accumulate data or get information along with the lock-request packet itself. If the target

can grant the lock, it performs the specified operation right away. If not, it queues up the lock

request along with the data or information and performs the operation when the lock can be

granted. Except in the case of get operations,MPI Win unlock blocks until it receives an

acknowledgment from the target that the operation has completed. This acknowledgment is

10

needed even if the lock is an exclusive lock because the origin does not know whether the lock

has been granted. Similar optimizations are possible for multiple one-sided operations, but at

the cost of additional queuing/buffering at the target.

5 Performance Results

We studied the performance of our implementation by using the same ghost-area exchange pro-

gram described in Section 1. Figure 5 shows the performance of the test program with MPICH2

on the fast-ethernet-connected Linux cluster and on the Sun SMP using shared memory. We see

that the time taken by the point-to-point version with MPICH2 is about the same as with other

MPI implementations in Figure 2, but the time taken by the one-sided versions is much lower. To

compare the performance of MPICH2 with other MPI implementations, we calculated the ratio

of the time with point-to-point communication to the time with one-sided communication and

tabulated the results in Tables 1 and 2.3 For short messages, MPICH2 is almost six times faster

than LAM for the fence version and about 50% faster for the post-start-complete-wait version.

Compared with Sun MPI for short messages, MPICH2 is more than twice as fast for all three

synchronization methods. The difference narrows for large message sizes where the synchro-

nization overheads are less of an issue, but MPICH2 still performs better than both LAM and

Sun MPI.

We note that although we have succeeded in minimizing the synchronization overhead as-

sociated with one-sided communication, MPI point-to-point communication still outperforms

one-sided communication in our experiments. We attribute this to the following reasons:

• Since we use the CH3 communication layer in MPICH2 as the basis for our implementa-

tion of one-sided communication, and CH3 uses a two-sided communication model, MPI

one-sided communication effectively gets converted to two-sided communication at the

lower levels. We plan to address this issue by extending the CH3 API to include sup-

port for one-sided communication, particularly for networks that have native support for

remote-memory access.

• On the Linux cluster, TCP socket communication is inherently two sided. As a result, it is

difficult, if not impossible, to outperform MPI point-to-point communication because of

the overhead (albeit small) added by the synchronization functions.

3Since MPICH2 does not run on an IBM SP yet, we could not compare with IBM MPI.

11

0.1

1

10

100

16 64 256 1024 4096 16384 65536 262144

Ti
m

e
(m

s)

message size (bytes)

MPICH-2, 25 processes, Linux cluster, fast ethernet

pt2pt
fence
pscw
lock

0.01

0.1

1

10

16 64 256 1024 4096 16384 65536 262144

Ti
m

e
(m

s)

message size (bytes)

MPICH-2, 24 processes on a single Sun SMP

pt2pt
fence
pscw
lock

Figure 5: Performance of MPICH2 on the Linux cluster and Sun SMP

12

Table 1: Ratio of the time with one-sided communication to the time with point-to-point com-

munication on the Linux cluster (the smaller the ratio, the better).

Size LAM MPICH2
(bytes) fence pscw fence pscw

16 18.9 3.3 3.5 2.03
64 18.1 3.2 3.28 1.94
256 13.6 2.4 2.35 1.60
1K 5.1 1.52 1.59 1.39
16K 1.40 1.02 1.08 1.05
64K 1.03 0.95 0.85 0.78
256K 1.30 1.21 1.22 1.08

• Since we place no restrictions on the memory that a user can use for the memory window,

the underlying communication even on shared-memory systems has two-sided semantics

(copy into and out of shared memory). We plan to address this issue by optimizing the

case where the user allocates the window withMPI Alloc mem(which can return a

shared segment that a remote process can directly access), and, in some cases, by using

operating-system hooks (such as in Linux) that enable a process to directly access the

private memory of a remote process [5, 18]. (Note that for lock-unlock synchronization,

an implementation is allowed to require the user to use window memory allocated with

MPI Alloc mem.)

In a few cases in Tables 1 and 2, we see that the ratio is less than one, which means that

one-sided communication is actually faster than point-to-point communication. We attribute this

to the waiting time for the receive to be called in the rendezvous protocol used in point-to-point

communication for large messages.

6 Conclusions and Future Work

This paper shows that an optimized implementation of the synchronization functions signifi-

cantly improves the performance of MPI one-sided communication. Nonetheless, several oppor-

tunities exist for improving the performance further, and we plan to explore them. For example,

in the case of lock-unlock synchronization for a single put or accumulate, we can improve the

performance substantially by not having the origin process wait for an acknowledgment from

the target at the end of the unlock. This optimization, however, breaks the semantics of unlock,

13

Table 2: Ratio of the time with one-sided communication to the time with point-to-point com-

munication on the Sun SMP (the smaller the ratio, the better).

Size Sun MPI MPICH2
(bytes) fence pscw lock fence pscw lock

16 6.9 6.0 6.5 3.4 2.45 2.24
64 9.2 6.5 8.8 2.94 2.47 2.30
256 7.0 5.3 6.7 3.0 2.55 2.38
1K 2.0 1.55 1.93 2.43 2.06 1.92
16K 1.79 1.44 1.26 0.99 0.82 0.79
64K 1.48 2.16 1.54 1.13 1.06 0.77
256K 2.76 2.59 1.51 0.99 1.01 0.94

which state that when the unlock returns, the operation is complete at both origin and target. We

plan to explore the possibility of allowing the user to pass an assert or info key to select weaker

semantics that do not require the operation to be completed at the target when unlock returns.

We plan to extend our implementation to work efficiently on networks that have native support

for remote-memory access, such as InfiniBand and Myrinet. We also plan to aggregate short

messages and communicate them as a single message instead of separately, and cache derived

datatypes at the target so that they need not be communicated each time.

Acknowledgments

We thank Chris Bischof for giving us access to the Sun SMP machines at the University of

Aachen and Dieter an May for helping us in running our tests on those machines. We also thank

Don Frederick for giving us access to the IBM SP at the San Diego Supercomputer Center.

References

[1] Noboru Asai, Thomas Kentemich, and Pierre Lagier. MPI-2 implementation on Fujitsu

generic message passing kernel. InProceedings of SC99: High Performance Networking

and Computing, November 1999.

[2] David Ashton, William Gropp, Rajeev Thakur, and Brian Toonen. The CH3 design for a

simple implementation of ADI-3 for MPICH-2 with a TCP-based implementation. Tech-

14

nical Report ANL/MCS-P1156-0504, Mathematics and Computer Science Division, Ar-

gonne National Laboratory, May 2004.

[3] Dan Bonachea. GASNet specification, v1.1. Technical Report CSD-02-1207, Dept. of

Computer Science, UC Berkeley, October 2002.

[4] S. Booth and E. Mour̃ao. Single sided MPI implementations for SUN MPI. InProceedings

of SC2000: High Performance Networking and Computing, November 2000.

[5] Phil Carns. Personal communication, 2004.

[6] Edgar Gabriel, Graham E. Fagg, and Jack J. Dongarra. Evaluating the performance of MPI-

2 dynamic communicators and one-sided communication. In Jack Dongarra, Domenico

Laforenza, and Salvatore Orlando, editors,Recent Advances in Parallel Virtual Machine

and Message Passing Interface, 10th European PVM/MPI Users’ Group Meeting, pages

88–97. Lecture Notes in Computer Science 2840, Springer, September 2003.

[7] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel,

T. Tsantilas, and R. H. Bisseling. BSPlib: The BSP programming library.Parallel Com-

puting, 24(14):1947–1980, December 1998.

[8] Cray Research Inc. Cray T3E C and C++ optimization guide, 1994.

[9] Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda, Darius Buntinas, Ra-

jeev Thakur, and William Gropp. Efficient implementation of MPI-2 passive one-sided

communication over InfiniBand clusters. In Dieter Kranzlmüller, Peter Kacsuk, and Jack

Dongarra, editors,Recent Advances in Parallel Virtual Machine and Message Passing In-

terface, 11th European PVM/MPI Users’ Group Meeting, pages 68–76. Lecture Notes in

Computer Science 3241, Springer, September 2004.

[10] Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda, William Gropp, and

Rajeev Thakur. High performance MPI-2 one-sided communication over InfiniBand. In

Proceedings of 4th IEEE/ACM International Symposium on Cluster Computing and the

Grid (CCGrid 2004), April 2004.

[11] LAM/MPI Parallel Computing.http://www.lam-mpi.org .

[12] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface,

July 1997.http://www.mpi-forum.org/docs/docs.html .

15

[13] Elson Mour̃ao and Stephen Booth. Single sided communications in multi-protocol MPI. In

Jack Dongarra, Peter Kacsuk, and Norbert Podhorszki, editors,Recent Advances in Parallel

Virutal Machine and Message Passing Interface, 7th European PVM/MPI Users’ Group

Meeting, pages 176–183. Lecture Notes in Computer Science 1908, Springer, September

2000.

[14] Fernando Elson Mourão and Jõao Gabriel Silva. Implementing MPI’s one-sided commu-

nications for WMPI. In Jack Dongarra, Emilio Luque, and Tomàs Margalef, editors,Re-

cent Advances in Parallel Virtual Machine and Message Passing Interface, 6th European

PVM/MPI Users’ Group Meeting, pages 231–238. Lecture Notes in Computer Science

1697, Springer, September 1999.

[15] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global Arrays: A non-

uniform-memory-access programming model for high-performance computers.The Jour-

nal of Supercomputing, 10(2):169–189, 1996.

[16] Rajeev Thakur, William Gropp, and Brian Toonen. Minimizing synchronization overhead

in the implementation of MPI one-sided communication. In Dieter Kranzlmüller, Peter

Kacsuk, and Jack Dongarra, editors,Recent Advances in Parallel Virtual Machine and

Message Passing Interface, 11th European PVM/MPI Users’ Group Meeting, pages 57–

67. Lecture Notes in Computer Science 3241, Springer, September 2004.

[17] Jesper Larsson Träff, Hubert Ritzdorf, and Rolf Hempel. The implementation of MPI-2

one-sided communication for the NEC SX-5. InProceedings of SC2000: High Perfor-

mance Networking and Computing, November 2000.

[18] David Turner. Personal communication, 2004.

[19] Joachim Worringen, Andreas Gäer, and Frank Reker. Exploiting transparent remote mem-

ory access for non-contiguous and one-sided-communication. InProceedings of the 2002

Workshop on Communication Architecture for Clusters (CAC), April 2002.

16

