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Abstract

An MPI profiling library is a standard mechanism for intercepting MPI calls by
applications. Profiling libraries are so named because they are commonly used to gather
performance data on MPI programs. Here we present a profiling library whose purpose
is to detect user errors in the use of MPI’s collective operations. While some errors
can be detected locally (by a single process), other errors involving the consistency of
arguments passed to MPI collective functions must be tested for in a collective fashion.
While the idea of using such a profiling library does not originate here, we take the idea
further than it has been taken before (we detect more errors, including those involving
datatype inconsistencies) and present an open-source library that can be used with any
MPI implementation. We describe the tests carried out, provide some details of the
implementation, illustrate the usage of the library, and present performance tests.
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1 Introduction

One measure of the quality of a software system is its ability to identify user errors at an
early stage and provide sufficient information for the user to correct the error. To this end,
all high-quality implementations of the Message Passing Interface (MPI) Standard [10, 4]
provide for runtime checking of arguments passed to MPI functions to ensure that they
are appropriate and will not cause the function to behave unexpectedly or even cause the
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application to crash. The MPI collective operations, however, present a special problem:
they are called in a coordinated way by multiple processes, and the Standard mandates
(and common sense requires) that the arguments passed on each process be consistent with
the arguments passed on the other processes. Perhaps the simplest example is the case of
MPI Bcast:

MPI_Bcast(buff, count, datatype, root, communicator)

in which each process must pass the same value for root. In this case, “consistent” means
“identical,” but more complex types of consistency exist. No single process by itself can
detect inconsistency; the error check itself must be a collective operation.

Fortunately, the MPI profiling interface allows one to intercept MPI calls and carry
out such a collective check before carrying out the “real” collective operation specified by
the application. In the case of an error, the error can be reported in the way specified by
the MPI Standard, still independently of the underlying MPI implementation, and without
access to its source code.

The MPI profiling interface consists primarily of a requirement in the MPI Standard that
all MPI functions (normally called by application programs using function names employing
the “MPI ” prefix) be also callable with a name using the corresponding “PMPI ” prefix as
well. This simple requirement allows a library writer, without access to the source code
of the MPI implementation, to intercept all MPI calls by interposing at link time his own
library of “MPI ” functions, which carry out some useful specialized operation devised by the
library writer. The specialized functions call “PMPI” functions required by the application.
Such a special library of “MPI ” functions is called a profiling library.

The profiling library we describe here is freely available as part of the MPICH2 MPI-2
implementation [7]. Since the library is implemented entirely as an MPI profiling library,
however, it can be used with any MPI implementation. For example, we have tested it with
the IBM’s MPI implementation for Blue Gene/L [1] and OpenMPI [8].

The idea of using the MPI profiling library for this purpose was first presented by Jes-
per Träff and Joachim Worringen in [11], where they describe the error-checking approach
taken in the NEC MPI implementation, in which even local checks are done in the profiling
library, some collective checks are done portably in a profiling library as we describe here,
and some are done by making NEC-specific calls into the proprietary MPI implementation
layer. The datatype consistency check in [11] is only partial, however; the sizes of commu-
nication buffers are checked, but not the details of the datatype arguments, where there is
considerable room for user error. Moreover, the consistency requirements are not on the
datatypes themselves, but on the datatype signatures; we say more about this in Section 3.1.

To address this area, we use a “datatype signature hashing” mechanism, devised by
William Gropp in [5]. He describes there a family of algorithms that can be used to assign
a small amount of data to an MPI datatype signature in such a way that only small mes-
sages need to be sent in order to catch most user errors involving datatype arguments to
MPI collective functions. In this paper we describe a specific implementation of datatype
signature hashing and present an MPI profiling library that uses datatype signature hash-
ing to carry out more thorough error checking than is done in [11]. Since extra work (to
calculate the hash) is involved, we also present some simple performance measurements,
although one can of course use this profiling library just during application development
and remove it for production use.
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An earlier, compact version of this paper appeared in [2]. In this revision we describe
the idea of MPI profiling library in general (above) and report on further portability and
performance experiments, including tests using OpenMPI. We have expanded the section
on datatype hashing to increase clarity and reference other work that has appeared since
the original version of this paper was written. In addition, we describe how the library is
used as a part of the MPE library distributed with MPICH, and provide more examples of
usage and sample output. We have also added a section describing future work.

In Section 2 we describe the nature and scope of the error checks we carry out and
compare our approach with that in [11]. Section 3 lays out details of our implementation,
including our implementation of the hashing algorithm given in [5]; we also describe how
usage of the library is made convenient in the MPICH2 environment and show some example
output. In Section 4 we present some performance measurements. Section 5 describes
areas in which we intend to extend and improve the capabilities of the library. Section 6
summarizes the paper.

2 Scope of Checks

In this section we describe the error checking carried out by our profiling library. We give
definitions of each check and provide a table associating the checks made on the arguments
of each collective MPI function with that function. We also compare our collective error
checking with that described in [11].

2.1 Definitions of Checks

The error checks for each MPI collective function are shown in Tables 1 and 2. There are
five categories of tests; these are described below:

These checks apply to most collective routines:

call checks that all processes in the communicator have called the same collective func-
tion in a given event, thus guarding against the error of calling MPI Reduce on some
processes, for example, and MPI Allreduce on others.

root means that the same argument was passed for the root argument on all processes.

datatype refers to datatype signature consistency. This test ensures both that the counts
and the datatypes are consistent in the collective call. This is explained further in
Section 3.1.

The following applies only to collective computation and some collective communication
routines:

MPI IN PLACE means that every processes either did or did not provide
MPI IN PLACE instead of a buffer.

op checks operation consistency, for collective operations that include computations. For
example, each process in a call to MPI Reduce must provide the same operation.

The following apply only to intercommunicator create and merge:

3



local leader and tag test consistency of the local leader and tag arguments. They are
used only for MPI Intercomm create.

high/low tests consistency of the high argument. It is used only for
MPI Intercomm merge.

The following apply only to collective topology routines:

dims checks for dims consistency across the communicator.

graph tests the consistency of the graph supplied by the arguments to
MPI Graph create and MPI Graph map.

The following apply only to collective I/O operations:

amode tests for amode consistency across the communicator for the function MPI File open.

size, datarep, and flag verify consistency on these arguments, respectively.

etype is an additional datatype signature check for MPI file operations.

order checks for the collective file read and write functions, therefore ensuring the proper
order of the operations. According to the MPI Standard [4], a begin operation must
follow an end operation, with no other collective file functions in between.

One check that is not included in this table is that the same communicator is passed by
each of the processes making the collective call, and that all processes in the communicator
are making the call. An approach to handling this is proposed in Section 5.

2.2 Comparison with Previous Work

This work can be viewed as an extension of the NEC implementation of collective error
checking via a profiling library presented in [11]. The largest difference between that work
and this is that we incorporate the datatype signature hashing mechanism described in
Section 3, which makes this paper also an extension of [5], where the hashing mechanism is
described but not implemented. In the NEC implementation, only message lengths, rather
than datatype signatures, are checked. We do not check length consistency since it would be
incorrect to do so in a heterogeneous environment. We also implement our library as a pure
profiling library. This precludes us from doing some MPI-implementation-dependent checks
that are provided in the NEC implementation, but allows our library to be used with any
MPI implementation. In this paper we also present some performance tests, showing that
the overhead, even of our unoptimized version, is acceptable. Finally, the library described
here is freely available.

3 Implementation

In this section we describe our implementation of the datatype signature matching presented
in [5]. We also show how we use datatype signatures in coordination with other checks on
collective operation arguments.

4



MPI Barrier call
MPI Bcast call, root, datatype
MPI Gather call, root, datatype
MPI Gatherv call, root, datatype
MPI Scatter call, root, datatype
MPI Scatterv call, root, datatype
MPI Allgather call, datatype, MPI IN PLACE
MPI Allgatherv call, datatype, MPI IN PLACE
MPI Alltoall call, datatype
MPI Alltoallw call, datatype
MPI Alltoallv call, datatype
MPI Reduce call, datatype, op
MPI AllReduce call, datatype, op, MPI IN PLACE
MPI Reduce scatter call, datatype, op, MPI IN PLACE
MPI Scan call, datatype, op
MPI Exscan call, datatype, op
MPI Comm dup call
MPI Comm create call
MPI Comm split call
MPI Intercomm create call, local leader, tag
MPI Intercomm merge call, high/low
MPI Cart create call, dims
MPI Cart map call, dims
MPI Graph create call, graph
MPI Graph map call, graph

Table 1: Checks performed on MPI-1 functions

3.1 Datatype Signature Matching

In MPI, the amount of data to send or receive is described by the tuple (count, datatype)
that indicates count copies of the datatype are used to describe the data. Because
datatypes in MPI may be built from combinations of basic datatypes (such as MPI INT), the
number of basic items that are communicated cannot be determined from the count alone.
Instead, the number and type of basic types must be compared (basic types are just the
MPI counterparts of the basic types in the language; e.g., MPI INT corresponds to the C int
type). The basic types within an MPI datatype are called the MPI datatype signature of
that MPI datatype. More formally, an MPI datatype signature for a datatype constructed
from n different basic datatypes typei is simply

Typesig = {type1, type2, . . . , typen}. (1)

(In MPI, the type map combines the information on the basic types and the displacement
in memory that is to be used in reading or writing the data from or to memory; the
displacement information is not relevant in our checks.)

A datatype hashing mechanism was proposed in [5] to allow efficient comparison of
datatype signature over any MPI collective call. Essentially, it involves comparison of
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MPI Comm spawn call, root
MPI Comm spawn multiple call, root
MPI Comm connect call, root
MPI Comm disconnect call
MPI Win create call
MPI Win fence call
MPI File open call, amode
MPI File set size call, size
MPI File set view call, datarep, etype
MPI File set automicity call, flag
MPI File preallocate call, size
MPI File seek shared call, order
MPI File read all begin call, order
MPI File read all call, order
MPI File read all end call, order
MPI File read at all begin call, order
MPI File read at all call, order
MPI File read at all end call, order
MPI File read ordered begin call, order
MPI File read ordered call, order
MPI File read ordered end call, order
MPI File write all begin call, order
MPI File write all call, order
MPI File write all end call, order
MPI File write at all begin call, order
MPI File write at all call, order
MPI File write at all end call, order
MPI File write ordered begin call, order
MPI File write ordered call, order
MPI File write ordered end call, order

Table 2: Checks performed on MPI-2 functions

a tuple (α, n), where α is the hash value and n is the total number of basic predefined
datatypes contained in it. A tuple of form (α, 1) is assigned for each basic MPI predefined
datatype (e.g. MPI INT), where α is some chosen hash value. The tuple for an MPI derived
datatype consisting of n basic predefined datatypes (α, 1) becomes (α, n). The combined
tuple of any two MPI derived datatypes, (α, n) and (β, m), is computed based on the hashing
function:

(α, n)⊕ (β, m) ≡ (α ∧ (β # n), n + m), (2)

where ∧ is the bitwise exclusive or (xor) operator, # is the circular left shift operator, and +
is the integer addition operator. The noncommutative nature of the operator ⊕ in equation
(2) guarantees the ordered requirement in datatype signature definition (Equation 1).

One of the obvious potential hash collisions is caused by the # operator’s circular shift
by 1 bit. Let us say there are four basic predefined datatypes identified by tuples (α, 1),
(β, 1), (γ, 1), and (λ, 1) and that α = λ # 1 and γ = β # 1. For n = m = 1 in equation (2),
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we have

(α, 1)⊕ (β, 1) ≡ (α ∧ (β # 1), 2)
≡ ((β # 1) ∧ α, 2)
≡ (γ ∧ (λ # 1), 2)
≡ (γ, 1)⊕ (λ, 1),

(3)

If the hash values for all basic predefined datatypes are assigned consecutive integers,
there will be roughly a 25 percent collision rate as indicated by equation (3). The simplest
solution for avoiding this problem is to choose consecutive odd integers for all the basic
predefined datatypes. Also, there are composite predefined datatypes in the MPI standard
(e.g., MPI FLOAT INT), whose hash values are chosen according to equation (2) such that

MPI FLOAT INT = MPI FLOAT ⊕MPI INT

.
The tuples for MPI UB and MPI LB are assigned (0, 0), so they are essentially ignored.

MPI PACKED is a special case, as described in [5].
More complicated derived datatypes are decoded by using MPI Type get envelope()

and MPI Type get content() and their hashed tuple computed during the process. Com-
puting the hash value in the case where there “count” value is greater than one exploits the
log(n) algorithm described in [5].

While the simple hash function above is adequate for detecting mismatches of the ba-
sic datatypes, more sophisticated hash functions can be used that are more accurate for
common derived datatypes. For example, see [6] where computationally efficient hash func-
tions based on Galois Fields are described and tested against a collection of MPI derived
datatypes.

3.2 Collective Datatype Checking

Because of the different comunication patterns and the different specifications of the send
and receive datatypes in various MPI collective calls, a uniform method of collective datatype
checking is not attainable. Hence five different procedures are used to validate the datatype
consistency of the collectives. The goal here is to provide error messages at the process
where the erroneous argument has been passed. To achieve that goal, we tailor each proce-
dure to match the communication pattern of the profiled collective call. For convenience,
each procedure is named by one of the MPI collective routines being profiled.

Collective Scatter Check

1. At the root, compute the sender’s datatype hash tuple.

2. Use PMPI Bcast() to broadcast the hash tuple from the root to other processes.

3. At each process, compute the receiver’s datatype hash tuple locally and compare it
to the hash tuple received from the root.
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A special case of the collective scatter check is when the sender’s datatype signature
is the same as the receiver’s. This special case can be refered to as a collective bcast
check. It is used in the profiled version of MPI Bcast(), MPI Reduce(), MPI Allreduce(),
MPI Reduce scatter(), MPI Scan(), and MPI Exscan().

The general collective scatter check is used in the profiled version of MPI Gather() and
MPI Scatter().

Collective Scatterv Check

1. At the root, compute the vector of the sender’s datatype hash tuples.

2. Use PMPI Scatter() to broadcast the vector of hash tuples from the root to the
corresponding process in the communicator.

3. At each process, compute the receiver’s datatype hash tuple locally and compare it
to the hash tuple received from the root.

The collective scatterv check is used in the profiled version of MPI Gatherv() and MPI Scatterv().

Collective Allgather Check

1. At each process, compute the sender’s datatype hash tuple.

2. Use PMPI Allgather() to gather other senders’ datatype hash tuples as a local hash
tuple vector.

3. At each process, compute the receiver’s datatype hash tuple locally, and compare it
to each element of the hash tuple vector received.

The collective allgather check is used in the profiled version of MPI Allgather() and
MPI Alltoall().

Collective Allgatherv Check

1. At each process, compute the sender’s datatype hash tuple.

2. Use PMPI Allgather() to gather other senders’ datatype hash tuples as a local hash
tuple vector.

3. At each process, compute the vector of the receiver’s datatype hash tuples locally,
and compare this local hash tuple vector to the hash tuple vector received element by
element.

The collective allgatherv check is used in the profiled version of MPI Allgatherv().
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Collective Alltoallv/Alltoallw Check

1. At each process, compute the vector of the sender’s datatype hash tuples.

2. Use PMPI Alltoall() to gather other senders’ datatype hash tuples as a local hash
tuple vector.

3. At each process, compute the vector of the receiver’s datatype hash tuples locally,
and compare this local hash tuple vector to the hash tuple vector received element by
element.

The difference between collective alltoallv and collective alltoallw checks is that alltoallw is
more general than alltoallv; in other words, alltoallw accepts a vector of MPI Datatype in
both the sender and receiver.

The collective alltoallv check is used in the profiled version of MPI Alltoallv(), and
the collective alltoallw check is used in the profiled version of MPI Alltoallw().

3.3 Usage

In this section we illustrate how users enable the collective and datatype checking library
when linking their applications in the case of MPICH; for other MPI implementations, they
would follow the appropriate procedures for linking in profiling libraries.

The collective and datatype checking library is freely available as part of MPICH2 [7]
in the MPE subdirectory, along with other profiling libraries. MPE provides convenient
compiler wrappers to allow for easy access of different profiling libraries. When MPE is in-
stalled separately with non-MPICH2 MPI implementation, e.g. IBM’s MPI for BlueGene/L
or OpenMPI, two compiler wrappers, “mpecc” for C program and “mpefc” for Fortran pro-
gram, are created. Available MPE profiling options for “mpecc” and “mpefc” are as follows;
the option -mpicheck invokes the checks described in this paper.

-mpilog : Automatic MPI and MPE user-defined states logging.
This links against -llmpe -lmpe.

-mpitrace : Trace MPI program with printf.
This links against -ltmpe.

-mpianim : Animate MPI program in real-time.
This links against -lampe -lmpe.

-mpicheck : Check MPI Program with the Collective & Datatype
Checking library. This links against -lmpe_collchk.

-graphics : Use MPE graphics routines with X11 library.
This links against -lmpe <X11 libraries>.

-log : MPE user-defined states logging.
This links against -lmpe.
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-nolog : Nullify MPE user-defined states logging.
This links against -lmpe_null.

-help : Print this help page.

To invoke the collective and datatype checking library, one can do

mpecc -mpicheck -o mpi_pgm mpi_pgm.c

Since MPICH2 provides a more comprehensive set of compiler wrappers, (mpicc, mpicxx,
mpif77, and mpif90) than MPE’s, the MPE profiling options are available through a -
mpe=[MPE option] switch provided by these wrappers, e.g. the following commmand will
link the user program with the collective and datatype checking library.

mpicc -mpe=mpicheck -o mpi_pgm mpi_pgm.c

3.4 Example Output

We show here sample output (that would appear on stderr) from the collective and
datatype checking library to indicate an incorrect use of MPI collective call.

Example 1. In this example, run with four processes with MPICH2, all but the last
process call MPI Bcast; the last process calls MPI Barrier.

Starting MPI Collective and Datatype Checking
[cli_3]: aborting job:
Fatal error in MPI_Comm_call_errhandler:

Collective Checking: BARRIER (Rank 3) --> Collective call (BARRIER) is Inconsistent with Rank 0’s (BCAST).

rank 3 in job 4 jlogin1_42089 caused collective abort of all ranks
exit status of rank 3: return code 1

Example 2. In this example, run with four processes with MPICH2, all but the last
process give MPI INT; but the last process gives MPI BYTE.

Starting MPI Collective and Datatype Checking
[cli_3]: aborting job:
Fatal error in MPI_Comm_call_errhandler:

Collective Checking: BCAST (Rank 3) --> Inconsistent datatype signatures detected between rank 3 and rank 0.

rank 3 in job 3 jlogin1_42089 caused collective abort of all ranks
exit status of rank 3: return code 1

Example 3. In this example, run with four processes with OpenMPI, all but the last
process give MPI INT; but the last process gives MPI BYTE.

Starting MPI Collective and Datatype Checking
Collective Checking: BCAST --> no error
Collective Checking: BCAST --> no error
[jlogin1:09505] *** An error occurred in MPI_Comm_call_errhandler
[jlogin1:09505] *** on communicator MPI_COMM_WORLD
[jlogin1:09505] *** MPI_SUCCESS: no errors
[jlogin1:09505] *** MPI_ERRORS_ARE_FATAL (goodbye)
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Collective Checking: BCAST --> Inconsistent datatype signatures detected between rank 3 and rank 0.

[jlogin1:09513] *** An error occurred in MPI_Comm_call_errhandler
[jlogin1:09513] *** on communicator MPI_COMM_WORLD
[jlogin1:09513] *** MPI_SUCCESS: no errors
[jlogin1:09513] *** MPI_ERRORS_ARE_FATAL (goodbye)
Collective Checking: BCAST --> no error
[jlogin1:09509] *** An error occurred in MPI_Comm_call_errhandler
[jlogin1:09509] *** on communicator MPI_COMM_WORLD
[jlogin1:09509] *** MPI_SUCCESS: no errors
[jlogin1:09509] *** MPI_ERRORS_ARE_FATAL (goodbye)
[jlogin1:09501] *** An error occurred in MPI_Comm_call_errhandler
[jlogin1:09501] *** on communicator MPI_COMM_WORLD
[jlogin1:09501] *** MPI_SUCCESS: no errors
[jlogin1:09501] *** MPI_ERRORS_ARE_FATAL (goodbye)
[jlogin1:09492] [0,0,0]-[0,1,0] mca_oob_tcp_msg_recv: readv failed with errno=104
3 additional processes aborted (not shown)

Example 4. In this example, run with four processes with MPICH2, all but the last
process use 0 as the root parameter; the last process uses its rank.

Starting MPI Collective and Datatype Checking
rank 3 in job 2 jlogin1_42089 caused collective abort of all ranks

exit status of rank 3: killed by signal 9
[cli_3]: aborting job:
Fatal error in MPI_Comm_call_errhandler:

Collective Checking: BCAST (Rank 3) --> Root Parameter (3) is inconsistent with rank 0 (0)

Example 5 In this example, run with four processes with OpenMPI, all but the last
process use 0 as the root parameter; the last process uses its rank.

Starting MPI Collective and Datatype Checking
Collective Checking: BCAST --> no error
[jlogin1:07718] *** An error occurred in MPI_Comm_call_errhandler
[jlogin1:07718] *** on communicator MPI_COMM_WORLD
[jlogin1:07718] *** MPI_SUCCESS: no errors
[jlogin1:07718] *** MPI_ERRORS_ARE_FATAL (goodbye)
Collective Checking: BCAST --> no error
[jlogin1:07725] *** An error occurred in MPI_Comm_call_errhandler
[jlogin1:07725] *** on communicator MPI_COMM_WORLD
[jlogin1:07725] *** MPI_SUCCESS: no errors
[jlogin1:07725] *** MPI_ERRORS_ARE_FATAL (goodbye)
Collective Checking: BCAST --> no error
[jlogin1:07729] *** An error occurred in MPI_Comm_call_errhandler
[jlogin1:07729] *** on communicator MPI_COMM_WORLD
[jlogin1:07729] *** MPI_SUCCESS: no errors
[jlogin1:07729] *** MPI_ERRORS_ARE_FATAL (goodbye)
Collective Checking: BCAST --> Root Parameter (3) is inconsistent with rank 0 (0)
[jlogin1:07734] *** An error occurred in MPI_Comm_call_errhandler
[jlogin1:07734] *** on communicator MPI_COMM_WORLD
[jlogin1:07734] *** MPI_SUCCESS: no errors
[jlogin1:07734] *** MPI_ERRORS_ARE_FATAL (goodbye)
3 additional processes aborted (not shown)

4 Experiences

Here we describe our experiences with the collective error checking profiling library in the
areas of usage, porting, and performance.

After preliminary debugging tests gave us some confidence that the library was func-
tioning correctly, we applied it to the collective part of the MPICH2 test suite. This set
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of tests consists of approximately 70 programs, many of which carry out multiple tests,
that test the MPI-1 and MPI-2 Standard compliance for MPICH2. We were surprised (and
strangely satisfied, although simultaneously embarrassed) to find an error in one of our test
programs. One case in one test expected a datatype of one MPI INT to match a vector of
sizeof(int) MPI BYTEs. That is, part of the code to test the use of datatypes contained
the fragment:

sendtype->datatype = MPI_INT;
sendtype->count = 1;
recvtype->datatype = MPI_BYTE;
recvtype->count = sizeof(int);

This is incorrect, although MPICH2 allowed the program to execute.
To test a real application, we linked FLASH [9], a large astrophysics application utilizing

many collective operations, with the profiling library and ran one of its model problems. In
this case no errors were found.

A profiling library should be automatically portable among MPI implementations. The
library we describe here was developed under MPICH2. To check for portability and to
obtain separate performance measurements, we also used it in conjunction with IBM’s MPI
for BlueGene/L [1] and OpenMPI [8, 3], without encountering any problems. However, we
noticed that incorrect MPI collective programs sometimes behaved differently on different
implementations This is perfectly acceptable, since the MPI Standard does not specify the
behavior of erroneous programs. But it does make it particularly useful to identify and
report such errors before the actual collective call takes place.

We carried out performance tests on three platforms. On BlueGene/L, the collective
and datatype checking library and the test codes were compiled with xlc of version 8.0
and linked with the IBM’s MPI implementation (V1R3M1 400 2006-061024) available on
BlueGene/L.

Test Name count×Nitr No CollChk With CollChk
MPI Bcast 1×10 0.000028 0.001543
MPI Bcast 1K×1 0.000031 0.000424
MPI Bcast 128K×1 0.003121 0.032495

MPI Allreduce 1×10 0.000063 0.001898
MPI Allreduce 1K×1 0.000136 0.000543
MPI Allreduce 128K×1 0.009167 0.038532
MPI Alltoallv 1×10 0.000423 0.002264
MPI Alltoallv 1K×1 0.000175 0.000812
MPI Alltoallv 128K×1 0.015522 0.074069

Table 3: The maximum time taken (in seconds) among all the processes in a 32-process
MPI job on BlueGene/L. Where count is the number of MPI Double in the datatype, and
Nitr refers to the number of times the MPI collective routine was called in the test. The
underlined digits indicates that the corresponding digit could be less in one of the processes
involved.

The performance of the collective and datatype checking library of a 32-process job is
listed in Table 3, where each test case is linked with and without the collective and datatype
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checking library.
Similarly on a IA32 Linux cluster, the collective and datatype checking library and

the test codes were compiled with gcc of version 4.0.2 and linked with MPICH2-1.0.5 and
OpenMPI-1.1.2. The performance results of the library are tabulated in Table 4 and 5.

Test Name count×Nitr No CollChk With CollChk
MPI Bcast 1×10 0.040800 0.178053
MPI Bcast 1K×1 0.011457 0.045029
MPI Bcast 128K×1 0.197951 0.240698

MPI Allreduce 1×10 0.006159 0.111160
MPI Allreduce 1K×1 0.005569 0.047161
MPI Allreduce 128K×1 0.304521 0.341304
MPI Alltoallv 1×10 0.001572 0.093878
MPI Alltoallv 1K×1 0.003105 0.042199
MPI Alltoallv 128K×1 0.270906 0.293240

Table 4: The maximum time taken (in seconds) on a 32-process MPICH2 job on Jazz, an
IA32 Linux cluster. Where count is the number of MPI Double in the datatype, and Nitr

refers to the number of times the MPI collective routine was called in the test.

Tables, 3, 4 and 5, show that the relative cost of the collective and datatype checking
library diminishes as the size of the datatype increases. The cost of collective checking can
be significant when the datatype size is small. One would like the performance of such
a library to be good enough that it is convenient to use and does not affect the general
behavior of the application it is being applied to. On the other hand, performance is not
absolutely critical, since it is basically a debug-time tool and is not likely to be used when
the application is in production. Our implementation at this stage does still present a
number of opportunities for optimization, but we have found it highly usable.

Test Name count×Nitr No CollChk With CollChk
MPI Bcast 1×10 0.043394 0.157876
MPI Bcast 1K×1 0.009069 0.044477
MPI Bcast 128K×1 0.160046 0.181880

MPI Allreduce 1×10 0.051406 0.176388
MPI Allreduce 1K×1 0.230335 0.274223
MPI Allreduce 128K×1 1.624644 1.660873
MPI Alltoallv 1×10 0.010516 0.207629
MPI Alltoallv 1K×1 0.010338 0.046493
MPI Alltoallv 128K×1 0.348700 0.357958

Table 5: The maximum time taken (in seconds) on a 32-process OpenMPI job on Jazz, an
IA32 Linux cluster. Where count is the number of MPI Double in the datatype, and Nitr

refers to the number of times the MPI collective routine was called in the test.
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5 Future Work

We are pursuing a number of extensions and enhancements to this collective error-checking
library With respect to the current implementation, we need to forward any error returns
from the MPI library to the user when the error handler is not MPI ERRORS ABORT; this is
particularly true when MPI ERRORS RETURN has been selected as the error handler for MPI
routines.

In an MPI-2 environment, we can reduce the cost of comparing datatype signatures by
making use of the attribute caching functions to save the hash value on the MPI datatype;
thus we only need to compute the hash function once for a derived datatype. This can be
done when the datatype is commited with MPI Type commit, reducing the cost within the
collective routines.

A similar approach for detecting datatype mismatches can be applied to point-to-point
operations. In this case, we would also like to enable the option of an implementation-
specific approach, as it is relatively easy to include the datatype hash value in the message
envelope used within the MPI implementation. Of course, we will provide a fully portable
version that does not rely on interfacing with the internals of the MPI implementations.

One weakness of our approach is that it assumes that all processes in the communicator
are calling a collective operation. While we do check for the error of calling different
collective operations on the same communicator, we do not check for calling collective
operations on different communicators. For example, consider this code fragment in a
single-threaded program:

MPI_Comm_split( ..., &comm1 );
MPI_Comm_split( ..., &comm2 );
if (rank < size/2) {

MPI_Bcast( ..., comm1 );
MPI_Bcast( ..., comm2 );

}
else {

MPI_Bcast( ..., comm2 );
MPI_Bcast( ..., comm1 );

}

While something so clearly wrong is unlikely to occur so obviously in a code, this set of
collective operations could occur as a result of complex (and erroneous) logic in managing
several communicators, such as communicators for row and column computations in a ma-
trix. Our library will not catch these; instead, a deadlock will occur within the collective
operations that we use to implement the checks. To catch these errors, it is necessary to
use point-to-point operations on a private communicator. In MPI-1 programs, this can be
accomplished by creating a dup of MPI COMM WORLD and using a point-to-point implemen-
tation of an Allreduce operation to compare a communicator id, also maintained by the
colcheck library, to ensure that collective operations are properly ordered in the MPI code.
By using nonblocking operations and implementing a time-out, we can also handle errors
where some processes do not make a collective call at all, as in this example:

if (rank == 0) MPI_Bcast( ..., 0, MPI_COMM_WORLD );
else MPI_Recv( ..., 0, MPI_COMM_WORLD );
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(This error is seen when a user uses MPI Bcast as if it is a “SendAll” instead of an MPI
collective operation.)

Multithreaded programs introduce additional complexity. For example, the above mech-
anism for detecting mismatched use of communicators in collective calls is no longer valid
because different threads are permitted (and in fact are encouraged) to make MPI collective
calls on different communicators. Detecting user errors, such as the use of MPI Bcast as
a SendAll, will require either a timeout check (with an arbitrary, user-controllable time-
out period) or more sophisticated deadlock detection, such as determining that every MPI
thread (not just process) is in a blocking wait.

Finally, while the performance overhead for this profiling library is probably acceptable
for use in testing rather than production runs, the current implementation admits of op-
timizations that have not yet been carried out. The optimizations with the most impact
are those which will reduce the number of “extra” collective operations carried out by the
checking library.

6 Summary

In this paper we have described an effective technique for MPI programmers to use for
detecting easy-to-make but hard-to-find mistakes that often lead to deadlock, incorrect
results, or worse. The technique demonstrates an important use of the MPI “profiling
library” idea. We have demonstrated the library’s portability by running it with three
different MPI implementations and measuring its performance. We have implemented the
datatype hashing algorithm presented elsewhere and demonstrated its effectiveness. Our
final section outlines future improvements that are under way.
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