
Is OpenMP for Users?

Bill Gropp

Argonne National

Laboratory

www.mcs.anl.gov/~gropp

Quiz

Is the following a correct program?

#include <stdio.h>
#include <omp.h>
void skip(int i) {/*…*/}
void work(int i){/*…*/}
int main() {
 omp_lock_t lck:
 int id;
 omp_init_lock(&lck);
 #pragma omp parallel shared(lck) private(id)
 {
 id = omp_get_thread_num();
 omp_set_lock(&lck);
 printf(“My thread id I %d.\n”, id);
 omp_unset_lock(&lck);
 while(! omp_test_lock(&lck)) { skip(id); }
 work(id);
 omp_unset_lock(&lck);
 }
 omp_destroy_lock(&lck);
 return 1;
}

Quiz Answer

No. According to A.17, p 143-144, it must be

#include <stdio.h>
#include <omp.h>
void skip(int i) {/*…*/}
void work(int i){/*…*/}
int main() {
 omp_lock_t lck:
 int id;
 omp_init_lock(&lck);
 #pragma omp parallel shared(lck) private(id)
 {
 id = omp_get_thread_num();
 omp_set_lock(&lck);
 printf(“My thread id I %d.\n”, id);
 omp_unset_lock(&lck);
 while(! omp_test_lock(&lck)) { skip(id); }
 #pragma omp flush
 work(id);
 #pragma omp flush
 omp_unset_lock(&lck);
 }
 omp_destroy_lock(&lck);
 return 1;
}

Problems with Support for Multilingual
Programming

Three routines that set values (such as the number of threads to use)
have the same name but different calling sequences in C and Fortran

– Set_num_threads, set_dynamic, set_nested

If sizeof(omp_lock_t) != 4, then all 10 omp_xxx_lock routines can fail

If Fortran .true. and .false. don’t correspond to C, then 3 more routines
with logical return values can fail

This affects libraries: E.g., a user Fortran program that calls a library
written in C that uses OpenMP and that is linked in the usual and
expected way will fail

Only affects vendors whose C and Fortran compilers generate the
same loader name for the same “user” name

– This means IBM. I’m surprised IBM has not raised this issue.

Possible fixes:
– Add new routines for C and Fortran

Suggestion: Use mixed case names for C/C++, e.g., OMP_Set_num_threads(int
n) and omp_set_num_threads(Fint *n)

Deprecate routines with conflicting bindings

Risks with “stub” version

How does an application know whether it got the

stub version or not?

– One vendor made this mistake with their thread library.

Stubs in libc meant programs linked and ran but did not

have any thread capability

Even worse, same routines provided a mutex between

processes, meaning that an application could use fork to

create a new process and expect the mutex to provide a mutex

– (yes, this vendor should be shot)

There should be a runtime call to discover level of

support

Dangerous Language Features

“The language should make it hard to write incorrect programs”

Many OpenMP defaults put the burden on the programmer rather than the
compiler

– Pragmatic reason: Make sure that OpenMP code will run fast with minimum
intervention

We already saw flush
– For this reason, most thread libraries include flush as a property of the lock/unlock

routines

– Better to treat this as an optimization – if the user has evidence that performance
requires fine-grain control, then provide a way to do that.

Another example: lastprivate
– Without lastprivate, OpenMP pragmas can change the behavior of the program

Violates principle of least surprise

– Compilers are usually good at detecting dead variables, so making lastprivate the
default should not affect performance

– If the semantics of “last value of loop variable used by some thread” is desired, then
there should be a pragma for that

Many others

OpenMP – Assembly Language for
Thread Parallelism?

Not a bad thing

– Provides a portable assembly language

But must fix name conflicts first

But not the final solution

– Still too easy to write incorrect code

– Analysis tools that identify potential problems are

not an adequate solution

Not ubiquitous

Features like atomic require whole-program analysis

