
The Triumph of Hope over
Experience*?

Bill Gropp

*Samuel Johnson

University of Chicago Department of Energy

Where Was Parallel I/O?

• No parallel I/O results (independent I/O by
processes in the same parallel “job” doesn’t
count) were presented

• No application wants to generate a zillion files,
proportional to the number of processes or
nodes

They do it because they’ve given up getting what
they want

• “Only one parallel file system works and I
can’t buy it”

This is bad?

• Avoid I/O?
But you need to output something (why else
compute?)

University of Chicago Department of Energy

Realistic (Application-centric)
I/O Benchmarks

• POSIX I/O essentially specifies sequential
consistency

Understandable choice for the masses

Disastrous choice for parallel performance

• Solution is not “no consistency” (e.g., NFS); it
is a precise, relaxed consistency model

Such definitions exist:

• MPI-I/O provides an API

• Parallel file systems (incl PVFS) provide
implementations that work today

• We have a parallel I/O benchmark suite
It is in pretty rough shape

But any working parallel file system (with
MPI-IO) should be able to run it

University of Chicago Department of Energy

Predictions

• SOS9 – Parallel (not independent) I/O
results

• (out on a limb) POSIX I/O will stop
being a requirement for high-
performance file systems

• Parallel I/O will be required of any
programming model/environment

Just kidding!

University of Chicago Department of Energy

Programming Models

• You can always create a special-
purpose language for your
application

It will (given enough effort) be
superior to all other languages for
your application

It may be a disaster for others

It might be a disaster for you when
the next machine comes out

University of Chicago Department of Energy

Why Was MPI Successful?

• It address all of the following issues:
Portability

Performance

Simplicity and Symmetry

Modularity

Composability

Completeness

• Most current proposals for new
languages address only a subset

Two features often missing: modularity
(e.g., library support) and completeness
(e.g., I/O)

University of Chicago Department of Energy

Predictions

• We will be complaining about MPI

That’s ok. People are still complaining about Fortran

We’ll be complaining because most of the important
applications are using MPI

• We will be complaining about memory latency
and bandwidth

The ratio of memory latency to CPU cycle will
continue to increase

The ratio of MPI latency to memory latency will be
smaller, both to now and to the main/CPU ratio

• Applications will begin to use MPI Put/Get

University of Chicago Department of Energy

MPI Put/Get

• Part of MPI-2 (MPI MPI-1 + MPI-2)

• Can be implemented efficiently on a wide range of
platforms (e.g., does not require cache coherence wrt
network DMA)

• Designed to fit into MPI model (with full generality)

• Q: I’ve heard that the rules are too complex

A: There are simple rules that are sufficient for most
programmers.

• Q: I’ve heard that the RMA is slower than point to point

A: Sadly, few implementations have gotten this right.
MPICH2 demonstrates how to do it; shame will do the rest

• Q: But what about xxx?

A: Some xxx are a misunderstanding of the standard.
And some xxx are in fact limitations of the standard. The
right fix though is to improve the standard, not start over.

