Future Technologies that may Facilitate Science Breakthroughs

William Gropp
Argonne National Laboratory
www.mcs.anl.gov/~gropp
Panelists

- Bill Gropp, Argonne National Laboratory
- Scott Studham, Oak Ridge National Laboratory
- Dieter Kranzlmuller (Joh. Kepler Univ. Linz and Cern)
- Torsten Schwede (Biozentrum, Univ. of Basel)
The Fun Stuff

• Cool Hardware
 • New Memory Technologies
 • Density
 • Latency
 • Bandwidth
 • Non-volatile
 • New Processors
 • Cell
 • FPGAs
 • New Interconnects
 • Cost effective optical
 • “Proximity Communication”
Millipede

- 10nm process
- 1.2 Terabit/in² (25 DVDs)
- Slow (but could compete with Flash memory)
Nanotube Memory

- Electrostatic forces hold nanotubes in place
 - Multiple tubes are used to enhance manufacturability
- Claims 2GHz (0.5 ns) operation
- Nonvolatile
Exotic Technologies

- And molecular computing, quantum computing, …
Cell Processor

- 256 (SP) GFlops/chip
 - +8 for PowerPC processor
- 8 “SPE”s
 - No cache
 - Software managed memory
- Extremely low latency interconnect between adjacent SPEs
- Billions and Billions to be made…
- And put four of these into your laptop and you have a TeraFlop 😊
Personal Supercomputers

• Orion Multisystems
 • Desktop cluster is 10x a single processor
 • Deskside cluster is 100x a single processor
• … if you have parallel software
Stuff That Matters

- **Software**
 - Better match of problem concepts to language abstractions
 - Multilevel and/or domain-specific languages
 - “Parallel Matlab”
 - Domain-specific “languages” and problem solving environments

- **Algorithms**
 - Multiscale and multi-science
 - Error guarantees

- **Software that supports new algorithms**
 - Optimizing for existing applications means optimizing for applications and software developed for machines slower than my laptop
Put the Science First

- **Technology Driven**
 - What could we do?
 - What can’t we do?
 - Can it help applications?

- **Application Driven**
 - What stands in the way of applications?
 - Managing complexity of modern software
 - Managing the datasets
 - Consequence of data densities is that 40GB is small
 - (one thing that does not stand in the way — the ability to write simple codes quickly that must run with high parallel performance)
New Question

• In 2025, what technologies **will have been created** to enable scientific breakthroughs?
 • In other words, what problems do we face *now* that we must solve, and what might that solution be?