Beware of What You Wish For

William D. Gropp
Mathematics and Computer Science
www.mcs.anl.gov/~gropp

Argonne National Laboratory

7 A U.S. Department of Energy
Office of Science Laboratory
Ofice of Science Operated by The University of Chicago

What is a file?

Container of data, often indexed by name
But also:
- Usually implies strong consistency requirements:

- When a write to file completes, any system anywhere that
reads from the file gets the new data (stronger than
sequential consistency)

- Extreme consequences for parallel access, difficult to use
caches to optimize (and impossible without some cost)
- NFS doesn’t implement POSIX semantics for this reason

- Why is POSIX required for high-performance file systems
when it is considered too expensive for the file system
used to edit files and read email?

HPCS Requirements

See, for example, http://www.nitrd.gov/subcommittee/hec/workshop/
20050816_storage/talks/koester.pdf

How do you determine requirements?
- Find out what users need, or

- Find out what they are doing now, and multiply by one guess as to
future system size, or

- Let users do the multiplication, based on what they think the future
system looks like

Resulting in these:
- 32K file creates/s
- 1 Trillion files
- 10K metadata operations/second
- 30 GB/s (easy!)
- But stay tuned...

32K file creates per second

Why are separate directory entries required?

Are files unrelated or are they (or some subset of them) part of
a related cluster of data objects?

- Alternatives are 1 file (classical, Parallel 1/O) or 1 container (new
API, semantics tuned for real requirements)

- Note that the separate file approach introduces many scaling
problems, starting with the description of the data set by
enumeration

Is this really a database operation?
- Possibly with different types of entries from classic database

1 Trillion total files

Why are these separate files?
- Many problems with separate files.
- Enforcing POSIX atomicity (including directory updates).
- No efficient search API for directory operations in POSIX.
- Can’t use 32-bit int for inodes.
Is this 1 trillion records?
- What are the operations on these records?
- What are the atomicity requirements?

- A (custom) database system built from low-level 1/O (like real
databases) might be a more effective and realistic solution

- What are the requirements for that?

1 PF => 1PB main => 1 TB/s for 1000 seconds for checkpoint

* A checkpoint requirement can lead to massive bandwidth requirements

- 1PB of memory may cost way more than you expect; memory prices may be
leveling off

- There is a danger that the requirement becomes decoupled from the actual
system (e.g., change 0.1 PB memory for cost, but retain 1TB/s for checkpoint)

* Is this continuous or burst?
- Continuous — require enough bandwidth to file system hardware (e.g., spinning

disks)
- 1 TB/s/ (20 MB/s/disk) = 10'2/2x107 = 50000 disks w
- Use sustained transfer rate,not burst transfer rate 4
- Buy stock in Segway or stock up on roller blades 1
- Burst — option to buffer in higher speed storage (faster than

disk semiconductor memory)
- But still need order of 1PB memory of some kind
* Is the checkpoint for all 1PB of memory?
- May not need to dump entire memory to disk, at every checkpoint
- Can reduce requirements by an order of magnitude

w

Pioneering Office of Science
® Science and U.S. Department
Technology of Energy

Summary

Don’ t say “file” when you mean “data”

Be careful what you wish/ask for
- Who is going to answer “Do you want a POSIX file system” with “no”?
- But what if you add in the consequences of that choice?

POSIX consistency is a very strong requirement
- Hard to implement both correctly and fast

- NFS does neither
Simple scaling of current approaches to the next generation of
machines leads to unnecessarily expensive requirements
We shouldn’ t be talking about files at all

- Rather, persistent data with defined consistency rules and defined
persistency (checkpoint data may need less persistence than science
data; other data may be immutable)

- RENCI Petascale Data System is an example of this approach

