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Overview of Pros and Cons 

n  Pro 
–  Share development work 
–  Encourage interoperability of programming models 
–  Provide portability for HPCS languages (ubiquity) 

n  Con 
–  Match to programming model (duplicate the “MPI effect” — constrain 

models into CCS semantics) 
–  Match to hardware (particularly hardware that is expensive to emulate 

in software, e.g., full/empty bits or remote atomic updates) 
–  Runtime overhead may be unsuitable for load-store operations 
–  RISC vs CISC (small and simple vs large and rich) 

n  Short answer: 
–  Maybe …  

Why develop 
a common 
runtime? 



Some Issues 

n  What memory may be used in zero-copy mode? 
–  Special memory?  Statically allocated memory? Stack? 
–  Alternately, which classes of RMA memory does the programming model require: 

•  RMA memory defined collectively at init time 
•  RMA memory defined collectively at any time 
•  RMA memory defined non-collectively at any time 
•  All of process memory 

n  How are remote addresses specified? 
–  Require “symmetric allocation”? 
–  Prior initialization? 

n  Are stores ordered?  What is the consistency model? 
n  Is the model scalable?  Is it scalable to subsets of processes (teams)? 
n  What data alignments are supported efficiently? 
n  Are there remote atomic operations?  Fetch and increment? Compare and swap? Load-link/

store conditional? Queue insert and extract? 
n  How is progress managed (polling verses interrupt/non-polling/thread/separate hardware)? 
n  We examined these issues and others for MPI in the context of some existing runtime systems 

–  These other systems are well-optimized for their programming models 
–  This illustrates some of the challenges in a common model — the devil is in the details 



Motivation 

n  We worked on implementing a hybrid MPI-UPC programming 
environment 
–  Port MPICH2 over the GASNet communication subsystem 
–  GASNet couldn’t efficiently support all that was needed by MPICH2 

•  And MPI can’t efficiently support what is needed by UPC 
n  While there are many common features 

–  E.g., RMA operations, bootstrapping 
n  Communication subsystems are typically designed to support a specific 

middleware library or runtime system 
n  Previously analyzed the requirements of various programming model 

middleware and the communication subsystems that support them 
–  There are no existing communication subsystems that efficiently 

support all middleware 
–  There are no mutually exclusive requirements 



Software Layers of a High-Performance Computing System 

Application 

Middleware 
(MPICH2, GA Toolkit, UPC Runtime) 

Communication Subsystem 
(ARMCI, GASNet, Portals) 

GM IBA QSNet Shared 
Memory 



Design Issues for Communication Subsystems for MPI 

n  Required features (for the MPI programming model) 
–  Remote Memory Access operations 
–  MPI-2 RMA support 
–  GAS language and remote-memory model support 
–  Efficient transfer of large MPI two-sided messages 

n  Desired features 
–  Active messages 
–  In-order message delivery (to simplify support for MPI “envelope” 

ordering) 
–  Noncontiguous data (not just contiguous or strided) 



Summary of Features Supported by Current 
Communication Subsystems 

ARMCI ● ● ● V,S ● 
GASNet ● ● ● ● ● 
LAPI ● ● ● ● ● ● V 
Portals ● ● ● ● ● ● ● 
MPI-2 ● ● ● ● ● V,S,B ● 

* V = I/O vector; S = strided; B = block-indexed 



An Example Communication Subsystem – CCS  

n  CCS (Common Communication Subsystem) is based on 
–  Nonblocking RMA operations 

•  For efficient data transfer 
–  Active messages 

•  For small messages, control and invocation of remote operations 

n  Outline 
–  Active messages 
–  Remote memory access operations 
–  Efficient transfer of large MPI two-sided messages 
–  In-order message delivery 
–  Noncontiguous data 



Active Messages 

n  CCS provides active messages 
–  Sender specifies handler function with parameters 

•  Handler is executed on receiver when message is received 
–  Provide flexibility to upper layer developers 
–  Intended for small messages, so should be optimized for latency 

n  Depending on implementation, handlers will be called from within a CCS 
function, or asynchronously 
–  CCS provides locks which can safely be called from within handlers 
–  CCS provides a mechanism to prevent a handler from interrupting the 

current thread 
n  CCS allows multiple upper layer libraries to use CCS at the same time 

–  Each library allocates a context 
•  Uniquely identifies a set of handler functions 



Remote Memory Access Operations 

n  CCS provides nonblocking RMA operations 
–  Use the interconnect’s native RMA operations to maximize 

performance 
–  If native RMA operations are not available, use active messages 

•  E.g., Get : active message + put 
–  Support for GAS language and remote-memory models 

•  Concurrent accesses are allowed 
n  CCS uses callback functions for completion notification 

–  A callback function pointer and parameter are specified in the call to 
the RMA operation 

–  The callback is called when the RMA operation completes remotely 
–  This can be used to implement fence operations 

n  Lower-level interconnect libraries have different requirements for RMA 
memory 
–  CCS provides different functions to meet these requirements 

•  Registration of existing memory to be used for RMA 
•  RMA memory allocation 



RMA Memory 

n  Registration of existing memory to be used for RMA 
–  Most user-level communication libraries require registration 
–  CCS will manage which pages to register with communication library 

•  Communication library may limit the number of registered pages 
•  Not all pages registered with CCS need be registered with the 

communication library 
–  Note that there are many well-known problems with user-mode 

registration caches (if user/OS/middleware releases memory) 
n  Allocation of RMA memory 

–  Some architectures don’t support registration of existing pages 
•  E.g., Solaris can’t pin existing pages 

–  What if the implementation communicates using shared memory? 
•  Can’t make existing memory shared memory 

–  CCS provides methods to allocate RMA memory 
•  E.g., allocate a shared memory region to which others can attach 



Noncontiguous Data 
n  CCS supports noncontiguous data using datadescs  

–  Similar to MPI Datatypes 
–  Defined recursively 

•  But unrolled into component loops rather than use recursive procedure 
calls 

–  Basic datadescs 
•  Contiguous 
•  Vector – blocks of data at regular intervals 
•  Struct – like a C struct of different datadescs 
•  Indexed – similar to I/O vector 
•  Block-indexed – like indexed, but each segment is the same length 

n  Datadescs 
–  Along with native datatype info (e.g, int, double) can be used to implement 

MPI Datatypes 
–  LAPI I/O vectors can be implemented with Indexed datadesc 
–  ARMCI 

•  “Strided” can be implemented with Vector datadesc 
•  “Vector” can be implemented with Indexed datadesc 



Preliminary Performance Results (over GM2) 
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n  4-Byte latencies: 
–  GASNet  8.8 µs 
–  CCS  9.6 µs 
–  ARMCI  10.8 µs 
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n  Max bandwidth: 
–  GASNet  242 MBps 
–  CCS  244 MBps 
–  ARMCI  238 MBps 

=21120 cycles 



Implications for a Common Runtime System 

n  A “classic” runtime library is unlikely to satisfy all needs 
–  There may be too many differences at both the hardware and 

programming model level to bridge while maintaining performance 
–  We have an example in the BLAS and sparse BLAS 

•  BLAS for small matrices slower than simple Fortran code 
–  Overhead dominates for latency-sensitive sizes 

•  Sparse BLAS have had little impact 
–  Rich but still a mismatch to hardware and/or “programming 

model” (application data structures) 
n  What can we do? 

–  After all, BLAS are useful in the right place …  



Some Steps Toward a Common Communication Runtime 

n  Like the beginnings of MPI, there are a number of high-quality systems targeting 
different parts of the general space  

n  Methods could be shared for specific operations 
n  Initialization of runtime systems could be arranged to allow different systems to 

interoperate 
n  Source “templates” could be used as “executable documentation” of best practice 

and used as input in creating custom runtimes  
n  An extensible common core could be defined 

–  Define required architectural abilities 
•  Part of MPI RMA model complexity results from accommodating non-

cache-coherent systems; other complexity from weak consistency model 
–  Consider allowing several “progress” alternatives 

•  Picking one model is guaranteed to drive away some systems 
–  Consider following the graphics engine model (basic ops plus optional special 

features) 
–  Start from scratch (don’t start from anyone’s existing system) 

n  No matter what you do, by definition it will be a Greatest Common Denominator 
system 


