
Can There Be a Common
Communication Runtime
System?
William Gropp and Darius Buntinas
Mathematics and Computer Science Division

Overview of Pros and Cons

n  Pro
–  Share development work
–  Encourage interoperability of programming models
–  Provide portability for HPCS languages (ubiquity)

n  Con
–  Match to programming model (duplicate the “MPI effect” — constrain

models into CCS semantics)
–  Match to hardware (particularly hardware that is expensive to emulate

in software, e.g., full/empty bits or remote atomic updates)
–  Runtime overhead may be unsuitable for load-store operations
–  RISC vs CISC (small and simple vs large and rich)

n  Short answer:
–  Maybe …

Why develop
a common
runtime?

Some Issues

n  What memory may be used in zero-copy mode?
–  Special memory? Statically allocated memory? Stack?
–  Alternately, which classes of RMA memory does the programming model require:

•  RMA memory defined collectively at init time
•  RMA memory defined collectively at any time
•  RMA memory defined non-collectively at any time
•  All of process memory

n  How are remote addresses specified?
–  Require “symmetric allocation”?
–  Prior initialization?

n  Are stores ordered? What is the consistency model?
n  Is the model scalable? Is it scalable to subsets of processes (teams)?
n  What data alignments are supported efficiently?
n  Are there remote atomic operations? Fetch and increment? Compare and swap? Load-link/

store conditional? Queue insert and extract?
n  How is progress managed (polling verses interrupt/non-polling/thread/separate hardware)?
n  We examined these issues and others for MPI in the context of some existing runtime systems

–  These other systems are well-optimized for their programming models
–  This illustrates some of the challenges in a common model — the devil is in the details

Motivation

n  We worked on implementing a hybrid MPI-UPC programming
environment
–  Port MPICH2 over the GASNet communication subsystem
–  GASNet couldn’t efficiently support all that was needed by MPICH2

•  And MPI can’t efficiently support what is needed by UPC
n  While there are many common features

–  E.g., RMA operations, bootstrapping
n  Communication subsystems are typically designed to support a specific

middleware library or runtime system
n  Previously analyzed the requirements of various programming model

middleware and the communication subsystems that support them
–  There are no existing communication subsystems that efficiently

support all middleware
–  There are no mutually exclusive requirements

Software Layers of a High-Performance Computing System

Application

Middleware
(MPICH2, GA Toolkit, UPC Runtime)

Communication Subsystem
(ARMCI, GASNet, Portals)

GM IBA QSNet Shared
Memory

Design Issues for Communication Subsystems for MPI

n  Required features (for the MPI programming model)
–  Remote Memory Access operations
–  MPI-2 RMA support
–  GAS language and remote-memory model support
–  Efficient transfer of large MPI two-sided messages

n  Desired features
–  Active messages
–  In-order message delivery (to simplify support for MPI “envelope”

ordering)
–  Noncontiguous data (not just contiguous or strided)

Summary of Features Supported by Current
Communication Subsystems

ARMCI ● ● ● V,S ●
GASNet ● ● ● ● ●
LAPI ● ● ● ● ● ● V
Portals ● ● ● ● ● ● ●
MPI-2 ● ● ● ● ● V,S,B ●

* V = I/O vector; S = strided; B = block-indexed

An Example Communication Subsystem – CCS

n  CCS (Common Communication Subsystem) is based on
–  Nonblocking RMA operations

•  For efficient data transfer
–  Active messages

•  For small messages, control and invocation of remote operations

n  Outline
–  Active messages
–  Remote memory access operations
–  Efficient transfer of large MPI two-sided messages
–  In-order message delivery
–  Noncontiguous data

Active Messages

n  CCS provides active messages
–  Sender specifies handler function with parameters

•  Handler is executed on receiver when message is received
–  Provide flexibility to upper layer developers
–  Intended for small messages, so should be optimized for latency

n  Depending on implementation, handlers will be called from within a CCS
function, or asynchronously
–  CCS provides locks which can safely be called from within handlers
–  CCS provides a mechanism to prevent a handler from interrupting the

current thread
n  CCS allows multiple upper layer libraries to use CCS at the same time

–  Each library allocates a context
•  Uniquely identifies a set of handler functions

Remote Memory Access Operations

n  CCS provides nonblocking RMA operations
–  Use the interconnect’s native RMA operations to maximize

performance
–  If native RMA operations are not available, use active messages

•  E.g., Get : active message + put
–  Support for GAS language and remote-memory models

•  Concurrent accesses are allowed
n  CCS uses callback functions for completion notification

–  A callback function pointer and parameter are specified in the call to
the RMA operation

–  The callback is called when the RMA operation completes remotely
–  This can be used to implement fence operations

n  Lower-level interconnect libraries have different requirements for RMA
memory
–  CCS provides different functions to meet these requirements

•  Registration of existing memory to be used for RMA
•  RMA memory allocation

RMA Memory

n  Registration of existing memory to be used for RMA
–  Most user-level communication libraries require registration
–  CCS will manage which pages to register with communication library

•  Communication library may limit the number of registered pages
•  Not all pages registered with CCS need be registered with the

communication library
–  Note that there are many well-known problems with user-mode

registration caches (if user/OS/middleware releases memory)
n  Allocation of RMA memory

–  Some architectures don’t support registration of existing pages
•  E.g., Solaris can’t pin existing pages

–  What if the implementation communicates using shared memory?
•  Can’t make existing memory shared memory

–  CCS provides methods to allocate RMA memory
•  E.g., allocate a shared memory region to which others can attach

Noncontiguous Data
n  CCS supports noncontiguous data using datadescs

–  Similar to MPI Datatypes
–  Defined recursively

•  But unrolled into component loops rather than use recursive procedure
calls

–  Basic datadescs
•  Contiguous
•  Vector – blocks of data at regular intervals
•  Struct – like a C struct of different datadescs
•  Indexed – similar to I/O vector
•  Block-indexed – like indexed, but each segment is the same length

n  Datadescs
–  Along with native datatype info (e.g, int, double) can be used to implement

MPI Datatypes
–  LAPI I/O vectors can be implemented with Indexed datadesc
–  ARMCI

•  “Strided” can be implemented with Vector datadesc
•  “Vector” can be implemented with Indexed datadesc

Preliminary Performance Results (over GM2)

Latency

8

10

12

14

16

18

20

1 4 16 64 256 1024
Message size (Byte)

La
te

nc
y

(µ
se

c)

CCS
GASNet
ARMCI

n  4-Byte latencies:
–  GASNet 8.8 µs
–  CCS 9.6 µs
–  ARMCI 10.8 µs

Bandwidth

0

50

100

150

200

250

1 100 10,000 1,000,000
Message size (Byte)

B
an

dw
id

th
 (M

B
/s

)

CCS
GASNet
ARMCI

n  Max bandwidth:
–  GASNet 242 MBps
–  CCS 244 MBps
–  ARMCI 238 MBps

=21120 cycles

Implications for a Common Runtime System

n  A “classic” runtime library is unlikely to satisfy all needs
–  There may be too many differences at both the hardware and

programming model level to bridge while maintaining performance
–  We have an example in the BLAS and sparse BLAS

•  BLAS for small matrices slower than simple Fortran code
–  Overhead dominates for latency-sensitive sizes

•  Sparse BLAS have had little impact
–  Rich but still a mismatch to hardware and/or “programming

model” (application data structures)
n  What can we do?

–  After all, BLAS are useful in the right place …

Some Steps Toward a Common Communication Runtime

n  Like the beginnings of MPI, there are a number of high-quality systems targeting
different parts of the general space

n  Methods could be shared for specific operations
n  Initialization of runtime systems could be arranged to allow different systems to

interoperate
n  Source “templates” could be used as “executable documentation” of best practice

and used as input in creating custom runtimes
n  An extensible common core could be defined

–  Define required architectural abilities
•  Part of MPI RMA model complexity results from accommodating non-

cache-coherent systems; other complexity from weak consistency model
–  Consider allowing several “progress” alternatives

•  Picking one model is guaranteed to drive away some systems
–  Consider following the graphics engine model (basic ops plus optional special

features)
–  Start from scratch (don’t start from anyone’s existing system)

n  No matter what you do, by definition it will be a Greatest Common Denominator
system

