
Half full or half empty?

William Gropp
Mathematics and Computer Science
www.mcs.anl.gov/~gropp

Argonne National
Laboratory Half Full or Half Empty

MPI on Multicore Processors

Work of Darius Buntinas and Guillaume Mercier

340 ns MPI ping/pong latency

More room for improvement (but will require better software engineering tools)

Argonne National
Laboratory Half Full or Half Empty

Everything Doesn’t Double

Travel times

from New York

to Chicago, from

1,000,000BC to

1830

Image from “Nature’s

Metropolis”

(Further west is

infinite - unlikely

to survive the

trip)

Argonne National
Laboratory Half Full or Half Empty

Rate of Travel from NY – 1857

What’s the time today? 1hr to airport, 2hrs at airport, 2hrs in air, 1 hr to

destination = 6hrs; a factor of only six from 1857.

Argonne National
Laboratory Half Full or Half Empty

CPU Speeds Stagnant

From

http://www.tomshardware.com/2005/11/21/the_mother_of_all_cpu

_charts_2005/

Doubling

happens

until it

doesn’t

Argonne National
Laboratory Half Full or Half Empty

What will multicore look like in 6
years?

Already 8 cores in some chips; if double every 1.5 years, we’ll have

128 cores in a chip.

Will these be cache coherent?

– Maybe, but most likely by making accesses to other caches

relatively expensive, or …

– “When [a] request for data from Core 1 results in a L1 cache

miss, the request is sent to the L2 cache. If this request hits a

modified line in the L1 data cache of Core 2, certain internal

conditions may cause incorrect data to be returned to the Core

1.”

– What do you think this is going to be like with 64 cores? 1024?

How well will prefetch work in hiding memory latency with 128

concurrent yet different memory references?

Argonne National
Laboratory Half Full or Half Empty

Memory Access

Consider the balance of computation to memory access

– We look at latency and bandwidth now

– Consider latency: Number of cycles to access main (off chip)

memory

– For any part that of the code that is not parallelized, for a

multicore chip, the effective latency is really the sum(over cores)

of the cycles to access main memory, since that is the lost (or

overlappable) work while waiting for memory

• Multicore doesn’t just stress bandwidth, it increases the need

for perfectly parallel algorithms

All systems will look like attached processors - high latency, low

(relative) bandwidth to main memory

Argonne National
Laboratory Half Full or Half Empty

Breaking the Assumptions

Don’t have any off-chip memory

– Consequence: Need algorithms, programming models, and

software tools to work in more limited memory (a few GB)

Have off-chip memory, but manage it more effectively

– Consequence: Need to find a true, general-purpose

hardware/software model

Overlap latency with split operations

– Consequence: Need to find massive amounts of concurrency;

need to manage the programming challenges of split operations

(these are hard for programmers to use correctly - may be an

opportunity for formal methods)

Argonne National
Laboratory Half Full or Half Empty

Three Ways to Make Multicore Work

Number 3:

Software Engineering: Better ways to restructure

codes

– E.g. Loop fusion (vs the more maintainable

and understandable to the computational

scientist approach of using separate loops).

Need to present the computational scientist

with the best code to maintain and change,

while efficiently managing the creation of

more memory-bandwidth-friendly codes.

Must manage the issues mentioned by Ken

– Library routine fusion (telescoping

languages)

• While libraries provide good

abstractions and often better

implementations, those very

abstractions can introduce extra

memory motion

– Tools to manage locality

• Compile time (local/global?) and

Runtime (memory views, perhaps

similar to file views in parallel file

systems)

Source code transformation tool for performance

annotations, thanks to Boyanna Norris

Argonne National
Laboratory Half Full or Half Empty

Three Ways to Make Multicore Work

Number 2:

Programming Models: Work with the system to coordinate data motion

– Vectors, Streams, Scatter/Gather, …

– Provide better compile and runtime abstractions about reuse and locality of data

– Stop pretending that we can provide an efficient, single-clock-cycle-to-memory,

programming model and help programmers express what really happens (but

maintaining an abstraction so that codes are not instance-specific)

– I didn’t say programming languages

– I didn’t say threads

• See, e.g., Edward A. Lee, "The Problem with Threads," Computer, vol. 39, no.

5, pp. 33-42, May, 2006.

• “Night of the Living Threads”,

http://weblogs.mozillazine.org/roc/archives/2005/12/night_of_the_livin

g_threads.html, 2005

• “Why Threads Are A Bad Idea (for most purposes)” John Ousterhout
(~2004)

• “If I were king: A proposal for fixing the Java programming language's

threading problems” http://www-

128.ibm.com/developerworks/library/j-king.html, 2000

Argonne National
Laboratory Half Full or Half Empty

Three Ways to Make Multicore Work

Number 1:

Mathematics: Do more computational work with less data motion

– E.g., Higher-order methods

• Trades memory motion for more operations per word,

producing an accurate answer in less elapsed time than lower-

order methods

– Different problem decompositions (no stratified solvers)

• The mathematical equivalent of loop fusion

• E.g., nonlinear Schwarz methods

– Ensemble calculations

• Compute ensemble values directly

– It is time (really past time) to rethink algorithms for memory

locality and latency tolerance

