
1

Building a Successful
Scalable Parallel
Numerical Library:
Lessons From the
PETSc Library

William D. Gropp
Mathematics and Computer Science
www.mcs.anl.gov/~gropp

2
Argonne National

Laboratory

What is PETSc?

PETSc is a numerical library that is organized around mathematical

concepts appropriate for the solution of linear and nonlinear systems

of equations that arise from discretizations of Partial Differential

Equations

PETSc began as a tool to aid in research into domain decomposition

methods for elliptic and hyperbolic (with implicit time stepping) partial

differential equations. A new library was needed because

– Numerical libraries of the time were organized around particular

algorithms, rather than mathematical problems, making

experimentation with different algorithms difficult

– Most libraries were not re-entrant, making recursive use

impossible

PETSc addressed these limitations and clearly filled a need; PETSc

is now used by both applications scientists and researchers

2

3
Argonne National

Laboratory

The PETSc Team (Past and Present)

Dinesh

Kaushik

Kris

Buschelman

Satish

Balay

Bill

Gropp

Lois

Curfman

McInnes

Barry

Smith

Hong

Zhang

Matt

Knepley
Lisandro

Dalcin

Victor

Eijkhout

Dmitry

Karpeev

Everyone contributed to the results described in this talk

4
Argonne National

Laboratory

PETSc is Widely Used in Applications

Nano-simulations (20)

Biology/Medical(28)

Cardiology

Imaging and Surgery

Fusion (10)

Geosciences (20)

Environmental/Subsurface Flow (26)

Computational Fluid Dynamics (49)

Wave propagation and the Helmholz equation (12)

Optimization (7)

Other Application Areas (68)

Software packages that use or interface to PETSc (30)

Software engineering (30)

Algorithm analysis and design (48)

3

5
Argonne National

Laboratory

CFD on an Unstructured Mesh

3D incompressible Euler

Tetrahedral grid

Up to 11 million unknowns

Based on a legacy NASA code,
FUN3d, developed by W. K.
Anderson

Fully implicit steady-state

Primary PETSc tools: nonlinear
solvers (SNES) and vector
scatters (VecScatter)

Gordon Bell Prize winner in the
special category, 1999

Results courtesy of Dinesh Kaushik
and David Keyes, Old Dominion
Univ., partially funded by NSF and
ASCI level 2 grant

6
Argonne National

Laboratory

Fixed-size Parallel Scaling Results
(GFlop/s)

Dimension=11,047,096

4

7
Argonne National

Laboratory

PFLOTRAN Scaling Results

Multiscale, multiphase,

multicomponent subsurface

reactive flow solver

https://software.lanl.gov/pflotran

“PFLOTRAN uses PETSc as the

basis for its parallel framework”

Most recent, Cray XT4 results,

dual core mode

8
Argonne National

Laboratory

PETSc Features

Many (parallel) vector/array operations

Numerous (parallel) matrix formats and operations

Numerous linear solvers

Nonlinear solvers

Limited ODE integrators

Limited parallel grid/data management

Common interface for most DOE solver software

5

9
Argonne National

Laboratory

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc Application Codes

Matrices, Vectors, Indices
Grid

Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers

ODE Integrators Visualization

Interface

Structure of PETSc

10
Argonne National

Laboratory

A Journey Through the PETSc Design

Starting from the constraints on achieving effective parallel and

single node performance, I will cover the basic design choices and

rationales.

Then I will show a complete parallel application, complete with

performance instrumentation, a wide range of iterative and direct

methods, and preconditioners

6

11
Argonne National

Laboratory

The Constraints - Parallel Computing
Issues

Distributed Memory Model

– Programmer must participate in handling decomposition of

objects across processes

Shared Memory Model

– Poor integration with language (race detection, volatile, lack of

write/read barriers)

– Difficult to achieve scalability (hardware costly, complicated)

Consequences

– Choose MPI distributed memory model

– Would do the same today

• But maybe PGAS language will be appropriate soon

– Scalability requires careful attention to message latency

12
Argonne National

Laboratory

Distributed Objects

PETSc must provide a mechanism to work with objects that are

distributed across a collection of processors

Common patterns:

– Err = <THING>Create(parallel-context,<INFO>, <SIZE>,

&object)

– Err = <THING>Destroy(object)

Err = <THING><Operation>(object, <other-parms>)

For example,

– VecCreate(MPI_COMM_WORLD, PETSC_DECIDE, n, &x)

– MatMult(A, x, y)

Operations use the same name when possible:

– <THING>SetFromOptions(object)

• Use command line, environment variables, or defaults file to

set basic properties

7

13
Argonne National

Laboratory

Vectors in PETSc

Mathematical Objects

– Not a contiguous section of memory

Distributed across a set of processes

– May be a subset of all processes in the parallel job

– First decision:

• How General a Distribution is allowed for the representation of

data?

• For example, should Ghost cells be allowed? Non-contiguous

sections?

– PETSc uses a very simple decomposition

• A single, contiguous segment, ordered with the rank of the

processes

• Chosen for performance

– Lesson 1: Permit the best performance

14
Argonne National

Laboratory

Does PETSc need more general
Vectors?

So, how do you handle more general decompositions? PETSc

provides several alternatives, depending on the type of generality

– Non-contiguous in process: copy

• Not as bad as it seems, as the copy may provide better cache

locality and not be that costly

– Non-contiguous across processes: permutations

• Often better to apply permutations

– Plus, PETSc allows the use of arbitrary representations for

vectors

• But then the user is responsible for implementing all

operations between vectors, and operations on vectors by

other objects, such as matrix-vector product

– Lesson 2: Provide an escape for customization

8

15
Argonne National

Laboratory

Accessing Elements of a Vector

The element-wise approach seems simple:

– V[k] = 3

But what is involved with this in a parallel computer?

– One possibility is:

• Retrieve cache line containing v[k] from the current owner of that

cache line if any, assert ownership (flush from owner’s cache)

• Update the bytes corresponding to V[k].

• Write out the data to memory

• When the original owner needs to access (even to read), figure out if

the ownership of the cache line should move

• !!!!

– There are other options, but they all must handle where data is cached

and how it is updated.

Is this a good operation to support?

– Rarely a natural mathematical operation

– E.g., usually define entire vector, as in v = f(x,y)

– Setting a single element in a vector is both costly and rarely necessary

16
Argonne National

Laboratory

Improving Performance of Vector
Element Update

Lesson 3: Define/Update objects as a single operation

– Defer the “synchronization”; v[k] tells the language that after the

assignment, v[k] is visible anywhere v is defined. This may force

the system to wait until the data is available or to implement

complex caching strategies

– The alternative is relaxed consistency models, which may lead

the programmer to refer to data before it is available (because of

a mismatch between the computer language and these memory

consistency models)

Instead, define an operation that allows the user to define when the

object must be ready for use. This is a simple generalization of the

notion of matrix assembly

9

17
Argonne National

Laboratory

Assembly

PETSc uses the notion of object assembly

– First, describe update

– Initiate assembly

• Allow other work (Communication/Computation Overlap)

• At least, that was the theory:

– Communication systems require extra hardware support to

effectively overlap communication and computation

– There may not be natural work to insert in this slot

– Wait for the assembly to complete

• Note: still introduces more synchronization than strictly required

(there are possibilities here for improvement)

• This model selected for its simplicity

This applies to all objects that must be assembled

Not a new idea

– Same idea used to vectorize sparse matrix assembly

• Same problem - single element updates do not fit vector model

18
Argonne National

Laboratory

Setting Elements of a Vector

While changing the vector so that a single element is updated is inefficient, it is simple

PETSc provides a way to “set/add to an element that will be visible after the assembly

completes”:

– VecSetValue()

Since many multicomponent PDEs naturally compute/update all the values at a grid

point

– VecSetValues()

Key features:

– Values set are in the mathematical vector object

• User need not know/understand decomposition of vector representation

across processes

– Values are not available until after Assembly step completes

• VecAssemblyBegin()

• VecAssemblyEnd()

– PETSc efficiently manages the implementation of assembly

• Caches data, aggregates values destined to the same process

• Transparent to the user

Lesson 4: Provide ease-of-use features, even if they are not high-performance. Note

that this is not inconsistent with Lesson 1 (permit high performance).

10

19
Argonne National

Laboratory

The Curse of Orthogonality of
Function

PETSc provides high-performance methods for setting/updating

vectors by providing additional functions that require more expertise

The VecSetValues approach suffers from

– Excessive routine-call overhead (many load/stores related to

routine call relative to the few loads/stores for the desired

operation)

– Interprocess communication to shift data to the “owing” process

PETSc provides several alternatives, including

– VecGetOwnershipRange()

• Fixes the second problem (all updates made to local piece of

vector)

– VecGetArray(v, &vStorage)

• Fixes both problems

• But breaks “data hiding/encapsulation”

20
Argonne National

Laboratory

Help the User Solve Their Problem

Lesson 5: It is good to provide multiple ways to perform the same

operation (non-orthogonality of function)

– Unrealistic to achieve ease-of-use and performance with the

same interface

– It is better to provide multiple interfaces

• Also need a way to help guide the user among the different

choices (more on this later) (that’s a pointer to built-in

instrumentation)

This leads us to the next topic: What if your “vector” is really a

mesh?

– Consider the following regular mesh for a simple discretization…

11

21
Argonne National

Laboratory

Distributed Arrays With Ghost Cells

Proc 10

Proc 0 Proc 1

Proc 10

Proc 0 Proc 1

Box-type

stencil

Star-type

stencil

Data layout and ghost values

22
Argonne National

Laboratory

Distributed Arrays as Extensions of
Vectors

PETSc defines a “Distributed Array” which is a

– Multi-dimensional array

– Optimized for stencil operations by providing “ghost cells”

Same Issues as for vectors:

– Element-wise operations are easy to describe

– But an application (almost) never applies a stencil to a single

point; always to entire (distributed) array

• May apply different stencils at different points, but that’s an

aggregate operation if done properly

12

23
Argonne National

Laboratory

Working With Distributed Arrays

PETSc chose to only allow fast access to DA’s memory

– VecGetArray used on DA

• Note: Not DAGetArray! (Why in a few slides)

– Data may still involve a copy (vector may be contiguous)

Updates of ghost cells done by

– Describe ghost cell needs at the time the DA is created (static)

• Use DAxxx routines to exchange ghost cell data

– Separate begin/end allows this optimization:

DAxxxBegin

Compute using only local data (e.g., interior of domain)

DAxxxEnd

Compute using the ghost cells

Lesson 6: Provide special purpose objects (not routines!) for

important cases, and then optimize them

24
Argonne National

Laboratory

Creating a DA

DACreate2d(comm, wrap, type, M, N, m, n, dof, s, lm[], ln[], *da)

wrap: Specifies periodicity

DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, …

type: Specifies stencil

DA_STENCIL_BOX, DA_STENCIL_STAR

M/N: Number of grid points in x/y-direction

m/n: Number of processes in x/y-direction

s: The stencil width

lm/ln: Alternative array of local sizes

13

25
Argonne National

Laboratory

Generalized Mesh Support

The key feature of the DA is that it manages the halo exchange for

you; it uses the implicit geometry to determine the data to move

In a unstructured mesh, the description of required data can be

provided with an index set (more on the next slide).

PETSc provides vector scatter/gather operations for the distributed

vector

– VecScatterCreate(…)

– Allows creation of an efficient communication schedule for the

scatter/gather operation

Lesson 7: Allow repeated operations to amortize setup on a per-

object basis

– Other examples: FFT library design

• When do you compute internal values?

– Apply to other operations, such as compute loops

• Generalization to code optimization will be touched on later

26
Argonne National

Laboratory

Index Sets
ISCreate(comm, n, v, &is)

– Creates a special case of a vector

• A nonnegative integer valued vector

• May or may not be a permutation

– Knowing whether it is a permutation could provide

performance benefits

– Provides a way to handle more general distributions that PETSc

provides by default

• Maintains the efficiency of contiguous storage while allowing

the generality (but with an explicit cost) of a general

distribution

Lesson Reminder: Keep the operation and the algorithm used to

implement that operation separate

– Scatter has many possible algorithms

– E.g., PARTI etc; different MPI implementations; PGAS/RDMA;

aggregate or eager, …

14

27
Argonne National

Laboratory

Object Oriented Design

Same ideas continue into the Matrix, Linear Solver, Nonlinear

Solver, …objects and operations

This is an example of Object-Oriented Design (O-O)

– Define the objects (e.g., Matrix) and the operations that act on

them (methods)

– Think of the objects as a class and consider the natural and

necessary operations upon them

– Internal information, such as the data structures used to

represent the objects or to efficiently operate upon them, are not

exposed to the user of the object (usually)

O-O provides a implementation strategy for the ideas here

O-O focuses on the objects, their relationships, and the operations

on and between them. The particular code or function may not be

known until run time (more later)

O-O can be used in any computer language, though some are easier

than others (PETSc is written almost entirely in C)

28
Argonne National

Laboratory

Inheritance

It is typical that one object is an extension of another

For example, a discretization mesh is a vector with additional

properties, such as the geometric location of each element

Some operations require this geometric knowledge, e.g., display,

geometric-based preconditioners, while others, such as matrix-vector

product, do not

In Computer Science, an object (such as a mesh) that extends

another object (such as a vector) is said to inherit from the base

object.

Inheritance does not require C++ or Java

Inheritance helps organize the objects in your library by providing a

well-defined taxonomy.

Lesson 8: Use the principles of object-oriented design to help use

hierarchy to structure a library --- use fewer basic concepts to

simplify understanding, and use concepts such as inheritance to help

(even if your computer language does not directly support it).

15

29
Argonne National

Laboratory

Matrices

What are PETSc matrices?

– Fundamental objects for storing linear operators (e.g., Jacobians)

Create matrices via

– MatCreate(…,Mat *)

• MPI_Comm - processes that share the matrix

• number of local/global rows and columns

– MatSetType(Mat,MatType)

• where MatType is one of

– default sparse AIJ: MPIAIJ, SEQAIJ

– block sparse AIJ (for multi-component PDEs): MPIAIJ, SEQAIJ

– symmetric block sparse AIJ: MPISBAIJ, SAEQSBAIJ

– block diagonal: MPIBDIAG, SEQBDIAG

– dense: MPIDENSE, SEQDENSE

– matrix-free

– etc.

• MatSetFromOptions(Mat) lets you set the MatType at runtime.

30
Argonne National

Laboratory

Matrices and Polymorphism

Single user interface independent of the underlying sparse data structure, e.g.,

– Matrix assembly

• MatSetValues()

– Matrix-vector multiplication

• MatMult()

– Matrix viewing

• MatView()

Multiple underlying implementations

– AIJ, block AIJ, symmetric block AIJ, block diagonal, dense, matrix-free, etc.

A matrix is defined by its properties and the operations that you can perform with it.

– Not by its data structures

– (Some operations require efficient access to matrix elements; that only means

that some operations, such as incomplete factor, may not be available if the

matrix uses a matrix-free representation)

The ability to associate different code for the same abstract operation, depending on

the circumstances (such as the data structure) is called polymorphism. It is a critical

part of the PETSc implementation approach

– Typically implemented with a function pointer

16

31
Argonne National

Laboratory

Matrix Assembly

Same form as for PETSc Vectors:

MatSetValues(Mat,…)

– number of rows to insert/add

– indices of rows and columns

– number of columns to insert/add

– values to add

– mode: [INSERT_VALUES,ADD_VALUES]

MatAssemblyBegin(Mat)

MatAssemblyEnd(Mat)

32
Argonne National

Laboratory

What Advantage Does This Approach
Give You?

Example: A Poisson Solver in PETSc

– The following 7 slides show a complete 2-d Poisson solver in

PETSc. Features of this solver:

• Fully parallel

• 2-d decomposition of the 2-d mesh

• Linear system described as a sparse matrix; user can select

many different sparse data structures

• Linear system solved with any user-selected Krylov iterative

method and preconditioner provided by PETSc, including

GMRES with ILU, BiCGstab with Additive Schwarz, etc.

• Complete performance analysis built-in

– Only 7 slides of code!

17

/* -*- Mode: C; c-basic-offset:4 ; -*- */

#include <math.h>

#include "petscsles.h"

#include "petscda.h"

extern Mat FormLaplacianDA2d(DA, int);

extern Vec FormVecFromFunctionDA2d(DA, int, double (*)(double,double));

/* This function is used to define the right-hand side of the

 Poisson equation to be solved */

double func(double x, double y) {

 return sin(x*M_PI)*sin(y*M_PI); }

int main(int argc, char *argv[])

{

 SLES sles;

 Mat A;

 Vec b, x;

 DA grid;

 int its, n, px, py, worldSize;

 PetscInitialize(&argc, &argv, 0, 0);

Solve a Poisson Problem with Preconditioned GMRES

PETSC “objects” hide
details of distributed
data structures and
function parameters

 /* Get the mesh size. Use 10 by default */

 n = 10;

 PetscOptionsGetInt(PETSC_NULL, "-n", &n, 0);

 /* Get the process decomposition. Default it the same as without

 DAs */

 px = 1;

 PetscOptionsGetInt(PETSC_NULL, "-px", &px, 0);

 MPI_Comm_size(PETSC_COMM_WORLD, &worldSize);

 py = worldSize / px;

 /* Create a distributed array */

 DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR,

n, n, px, py, 1, 1, 0, 0, &grid);

 /* Form the matrix and the vector corresponding to the DA */

 A = FormLaplacianDA2d(grid, n);

 b = FormVecFromFunctionDA2d(grid, n, func);

 VecDuplicate(b, &x);

PETSc provides
routines to access
parameters and
defaults

PETSc provides
routines to create,
allocate, and
manage distributed
data structures

18

 SLESCreate(PETSC_COMM_WORLD, &sles);

 SLESSetOperators(sles, A, A, DIFFERENT_NONZERO_PATTERN);

 SLESSetFromOptions(sles);

 SLESSolve(sles, b, x, &its);

 PetscPrintf(PETSC_COMM_WORLD, "Solution is:\n");

 VecView(x, PETSC_VIEWER_STDOUT_WORLD);

 PetscPrintf(PETSC_COMM_WORLD, "Required %d iterations\n", its);

 MatDestroy(A); VecDestroy(b); VecDestroy(x);

 SLESDestroy(sles); DADestroy(grid);

 PetscFinalize();

 return 0;

}

PETSc provides
routines that solve
systems of sparse
linear (and
nonlinear) equations

PETSc provides
coordinated I/O
(behavior is as-if a
single process),
including the output of
the distributed “vec”
object

/* -*- Mode: C; c-basic-offset:4 ; -*- */

#include "petsc.h"

#include "petscvec.h"

#include "petscda.h"

/* Form a vector based on a function for a 2-d regular mesh on the

 unit square */

Vec FormVecFromFunctionDA2d(DA grid, int n,

 double (*f)(double, double))

{

 Vec V;

 int is, ie, js, je, in, jn, i, j;

 double h;

 double **vval;

 h = 1.0 / (n + 1);

 DACreateGlobalVector(grid, &V);

 DAVecGetArray(grid, V, (void **)&vval);

19

/* Get global coordinates of this patch in the DA grid */

DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);

ie = is + in - 1;

je = js + jn - 1;

 for (i=is ; i<=ie ; i++) {

for (j=js ; j<=je ; j++){

 vval[j][i] = (*f)((i + 1) * h, (j + 1) * h);

}

 }

 DAVecRestoreArray(grid, V, (void **)&vval);

 return V;

}

Almost the uniprocess
code

/* -*- Mode: C; c-basic-offset:4 ; -*- */

#include "petscsles.h"

#include "petscda.h"

/* Form the matrix for the 5-point finite difference 2d Laplacian

 on the unit square. n is the number of interior points along a

 side */

Mat FormLaplacianDA2d(DA grid, int n)

{

 Mat A;

 int r, i, j, is, ie, js, je, in, jn, nelm;

 MatStencil cols[5], row;

 double h, oneByh2, vals[5];

 h = 1.0 / (n + 1); oneByh2 = 1.0 / (h*h);

 DAGetMatrix(grid, MATMPIAIJ, &A);

 /* Get global coordinates of this patch in the DA grid */

 DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);

 ie = is + in - 1;

 je = js + jn - 1;

Creating a Sparse Matrix, Distributed Across All Processes

Creates a parallel
distributed matrix using
compressed sparse row
format

20

for (i=is; i<=ie; i++) {

for (j=js; j<=je; j++){

 row.j = j; row.i = i; nelm = 0;

 if (j - 1 > 0) {

vals[nelm] = oneByh2;

cols[nelm].j = j - 1; cols[nelm++].i = i;}

 if (i - 1 > 0) {

vals[nelm] = oneByh2;

cols[nelm].j = j; cols[nelm++].i = i - 1;}

 vals[nelm] = - 4 * oneByh2;

 cols[nelm].j = j; cols[nelm++].i = i;

 if (i + 1 < n - 1) {

vals[nelm] = oneByh2;

cols[nelm].j = j; cols[nelm++].i = i + 1;}

 if (j + 1 < n - 1) {

vals[nelm] = oneByh2;

cols[nelm].j = j + 1; cols[nelm++].i = i;}

 MatSetValuesStencil(A, 1, &row, nelm, cols, vals,

 INSERT_VALUES);

}

 }

 MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);

 MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);

 return A;

}

Just the usual
code for setting
the elements of
the sparse matrix
(the complexity
comes, as it often
does, from the
boundary
conditions

40
Argonne National

Laboratory

Full-Featured PDE Solver

Command-line control of Krylov iterative method (choice of

algorithms and parameters)

Integrated performance analysis

Optimized parallel sparse-matrix operations

Question: How many MPI calls used in example?

21

41
Argonne National

Laboratory

Setting Solver Options at Runtime

-ksp_type [cg,gmres,bcgs,tfqmr,…]

-pc_type [lu,ilu,jacobi,sor,asm,…]

-ksp_max_it <max_iters>

-ksp_gmres_restart <restart>

-pc_asm_overlap <overlap>

-pc_asm_type [basic,restrict,interpolate,none]

etc ...

42
Argonne National

Laboratory

SLES: Selected Preconditioner Options

Functionality Procedural Interface Runtime Option

Set preconditioner type PCSetType() -pc_type [lu,ilu,jacobi,
 sor,asm,…]

Set level of fill for ILU PCILUSetLevels() -pc_ilu_levels <levels>

Set SOR iterations PCSORSetIterations() -pc_sor_its <its>

Set SOR parameter PCSORSetOmega() -pc_sor_omega <omega>

Set additive Schwarz

 variant

PCASMSetType() -pc_asm_type [basic,
 restrict,interpolate,none]

Set subdomain solver

 options

PCGetSubSLES() -sub_pc_type <pctype>
 -sub_ksp_type
<ksptype>
 -sub_ksp_rtol <rtol>

And many more options...

22

43
Argonne National

Laboratory

SLES: Selected Krylov Method Options

And many more options...

Functionality Procedural Interface Runtime Option

Set Krylov method KSPSetType() -ksp_type [cg,gmres,bcgs,
 tfqmr,cgs,…]

Set monitoring

 routine

KSPSetMonitor() -ksp_monitor, –ksp_xmonitor,
 -ksp_truemonitor, -
ksp_xtruemonitor

Set convergence

 tolerances

KSPSetTolerances() -ksp_rtol <rt> -ksp_atol <at>
 -ksp_max_its <its>

Set GMRES restart

 parameter

KSPGMRESSetRestart() -ksp_gmres_restart <restart>

Set orthogonalization

 routine for GMRES

KSPGMRESSet
 Orthogonalization()

-ksp_unmodifiedgramschmidt
 -ksp_irorthog

44
Argonne National

Laboratory

Computer Science Lessons

Organize around user-centric concepts

– PETSc used the mathematics

– Provide all that is necessary to manage the objects, not just the

“key” functions

Exploit Computer Science techniques to provide that interface

– Data Encapsulation and Data Hiding

– Polymorphism

– Inheritance

Pay attention to performance

23

45
Argonne National

Laboratory

Numerical Analysis Lessons

Algorithms!

– Get the right ones

– Get the scalable parallel ones

– Note that there is (rarely) a unique best choice

• Implies that the software must support many algorithms

• This is why PETSc organized by problems-to-solve rather than

algorithms

– This may be the most important lesson: Organize by

mathematical problem

46
Argonne National

Laboratory

Its Not Just Good Design

Distribution and Installation must be easy and robust

Example: Dealing with system dependencies

– By system name

• Bad idea - properties change, feature sets may vary

– By capability

• Requires tests

– Neither as good as you’d like

• GNU autoconf, PETSc’s is custom python-based

The devil is in the details

– We have a long list of problems that we’ve encountered with other libraries

• Using customized, incompatibly replacements for some of LAPACK or BLAS

• Making global definitions in header files of common names

– This is the Ninth Lesson: Design and code for portability; base on the correct

capability abstractions , not system name

• E.g., don’t have *ifdef LINUX !

24

47
Argonne National

Laboratory

The Application Ecosystem

PETSc expects to be a peer component in the application

– Must be part of a ecosystem of software

– Working with other libraries

Common problems in establishing a working ecosystem:

– Source problems, conflicting headers

• (C++ namespaces, can’t use #define)

– Data structure mismatch implies copy

• Could we define a source template?

– Parallel Issues

• OpenMP / MPI

• Nesting of threads

• Use of COMM_WORLD

This is the Tenth Lesson: Design to work with other libraries

48
Argonne National

Laboratory

Challenges for the Future

This is my personal view

What does PETSc (and other libraries) need?

Alternate Distribution Models

– Web based access to services

– GUI to help with installation options (e.g., finding BLAS)

Testing

– Coverage tests - MPICH2 provides a web-based summary of coverage test results

(http://www-unix.mcs.anl.gov/mpi/mpich2/todo/coverage/ch3:sock/index.htm)

– Automation of problem reports

• E.g., canonical build digest

Algorithm Updates

– Libraries require performance and correctness contracts

Performance Tuning

– Must be automated to be maintainable and affordable

– One approach is the use of performance annotations and source-to-source transformations

• In simplest form, helps with optimizations that are sensitive to data alignment

• More sophisticated forms apply complex transformations for cache, register, and non-
cache memory (e.g., for GPGPU)

25

49
Argonne National

Laboratory

Programming Languages, Scalability, and
Performance

– Parallel Programming Confusion

• MPI? + Threads? GPGPU? UPC? Other PGAS languages?

• How can we move forward?

– Source to source transformations

• Regardless of language, additional help will be required to ensure

good performance

• Reduce library overhead

– Especially in object assembly

– PETSc’s routine based method has too much overhead,

VecGetArray is too dangerous and error-prone

• Cross-module and library data structures

– E.g., Templates without full C++ to avoid large compilation times,

neglected optimizations (because of code complexity)

• Performance specialization in library

– For example, system-specific alignment pragmas or pseudo-

functions, such as those required by IBM’s BlueGene

50
Argonne National

Laboratory

Performance Optimization

One of the keys to success

– This was the first Lesson: provide competitive performance, and be able to prove

it

Integrate performance instrumentation

– Allows the user to tune code

• E.g., switch between easier-to-use convenience functions and more efficient

(but more complex) approaches

– Assembly is an example - element-wise vs block vs direct access to data

structures

Code specialization

– Compilers need help

• The existence of vendor-supplied DGEMM proves it - otherwise, you could just

compile the reference implementation.

– Code manually unrolled in PETSc

• Optimized for Power architecture

– Not optimal, even for Power

• Need for more effective methods; autotuning is one possibility

– The following slides, provided by Kathy Yelick of UCBerkeley and LBNL,

show why autotuning may be needed

26

51
Argonne National

Laboratory

Speedups on Itanium 2: The need for
search

Reference

Mflop/s

(7.6%)

Mflop/s

(31.1%)
Best: 4 2

52
Argonne National

Laboratory

SpMV Performance—raefsky3

27

53
Argonne National

Laboratory

SpMV Performance—raefsky3

54
Argonne National

Laboratory

Lessons

1. Permit the best performance

2. Provide an escape for customization

3. Define/Update objects as a single operation

4. Provide ease-of-use features, even if they are not high-
performance

5. It is good to provide multiple ways to perform the same operation
(non-orthogonality of function)

6. Provide special purpose objects (not routines!) for important
cases, and then optimize them

7. Allow repeated operations to amortize setup on a per-object basis

8. Use the principles of object oriented design to help use hierarchy
to structure a library

9. Design and code for portability; base on the correct capability
abstractions, not system name

10. Design to work with other libraries

28

55
Argonne National

Laboratory

Final Comments

The Success of PETSc is due to:

– Performance and Scalability

– Consistent interface based on the mathematical problems

– Completeness

• Can overcome “ease of use”

– Attention to portability and configuration issues

• Particularly for libraries coming from research groups, this is often the critical

factor

• Portability requires care but isn’t hard. It does require

– Knowing the relevant standards (or at least the subsets that are used)

– Having and following coding standards developed by someone with

experience

– Exploiting software tools (e.g., compiler switches, coding style checkers)

to audit the source

A Key Advantage to the PETSc approach

– Algorithm Independence

• Until we know the best way, don’t make the choice

• Users can try new algorithms without giving up the ones with which they are

comfortable

