A

Building a Successful
Argonne

Scalable Parallel

LABORATORY

Numerical Library:
Lessons From the
PETSc Library

William D. Gropp
Mathematics and Computer Science
www.mcs.anl.gov/~gropp

What is PETSc?

B PETSc is a numerical library that is organized around mathematical
concepts appropriate for the solution of linear and nonlinear systems
of equations that arise from discretizations of Partial Differential
Equations

B PETSc began as a tool to aid in research into domain decomposition
methods for elliptic and hyperbolic (with implicit time stepping) partial
differential equations. A new library was needed because

— Numerical libraries of the time were organized around particular
algorithms, rather than mathematical problems, making
experimentation with different algorithms difficult

— Most libraries were not re-entrant, making recursive use
impossible
B PETSc addressed these limitations and clearly filled a need; PETSc
is now used by both applications scientists and researchers

A Argonne National
Laboratory |

The PETSc Team (Past and Present)

Satish Matt Lisandro
Balay Knepley Dalcin
. Lois

Kris Curfman . .

Buschelman Mclnnes g Victor
Eijkhout

Gropp Smith Dmitry
Karpeev

Dinesh Hong
Kaushik Zhang

Everyone contributed to the results described in this talk

A Argonne National
Laboratory

PETSc is Widely Used in Applications

B Nano-simulations (20)

B Biology/Medical(28)

B Cardiology

B Imaging and Surgery

B Fusion (10)

B Geosciences (20)

B Environmental/Subsurface Flow (26)

B Computational Fluid Dynamics (49)

B Wave propagation and the Helmholz equation (12)
B Optimization (7)

B Other Application Areas (68)

B Software packages that use or interface to PETSc (30)
B Software engineering (30)

B Algorithm analysis and design (48)

A Argonne National
Laboratory

CFD on an Unstructured Mesh

3D incompressible Euler

Tetrahedral grid

Up to 11 million unknowns

Based on a legacy NASA code,

FUN3d, developed by W. K.

Anderson

Fully implicit steady-state

B Primary PETSc tools: nonlinear
solvers (SNES) and vector
scatters (VecScatter)

B Gordon Bell Prize winner in the

special category, 1999

Results courtesy of Dinesh Kaushik
and David Keyes, Old Dominion
Univ., partially funded by NSF and
ASCI level 2 grant

‘ Argonne National
Laboratory

Fixed-size Parallel Scaling Results
(GFlop/s)

Dimension=11,047,096

300

Aggregate Gflop/s
250 VvS. # hodes
* Asci Red
200} y d 1
150 A
100
T3
50 =
R + Asci Blue
A "
V.
¥ . 1 1 A i — 1 1 .
00 500 1000 1500 2000 2500 3000 3500 4000

‘ Argonne National
Laboratory

Wall-clock time (s) per flow step

PFLOTRAN Scaling Results

B Multiscale, multiphase,
multicomponent subsurface
reactive flow solver

= 1000
W https://software.lanl.gov/pflotran =
a
B “PFLOTRAN uses PETSc asthe 3
basis for its parallel framework” ‘% o
PFLOTRAN strong scaling
512 . Observed - 10
256 . Ideal
128
64 ™~
32 N
16 .
8 s -
4
32 64 128 256 512 1024 2048 4096

Number of processor cores

A Argonne National

A

Laboratory

Ideal
PFLOW (3 dotinode): PNLEMSL-MPP2 ©
PELOW (3 dotinode): ORNL-XT3 (Red Storm-Jaguar) [~
PTRAN (4 dotinode): PNUEMSL-MPP2 i e
Problem Size: 256 x 84 x 256 x 4(3) = 16,777,216 (12,582,912) dof
e
§ o
@
¢
16 32 64 128 256 512 1024 2048 4096

Number of Processors

Most recent, Cray XT4 results,
dual core mode

PETSc Features

B Many (parallel) vector/array operations
B Numerous (parallel) matrix formats and operations

B Numerous linear solvers
B Nonlinear solvers
B Limited ODE integrators

B Limited parallel grid/data management
B Common interface for most DOE solver software

A Argonne National

A

Laboratory

Structure of PETSc

Argonne ional
A g

Laboratory

A Journey Through the PETSc Design

B Starting from the constraints on achieving effective parallel and
single node performance, | will cover the basic design choices and
rationales.

B Then | will show a complete parallel application, complete with
performance instrumentation, a wide range of iterative and direct
methods, and preconditioners

Argonne National
A 9

Laboratory

The Constraints - Parallel Computing
Issues
B Distributed Memory Model

— Programmer must participate in handling decomposition of
objects across processes

B Shared Memory Model

— Poor integration with language (race detection, volatile, lack of
write/read barriers)

— Difficult to achieve scalability (hardware costly, complicated)
B Consequences
— Choose MPI distributed memory model
— Would do the same today
* But maybe PGAS language will be appropriate soon
— Scalability requires careful attention to message latency

'A Argonne National
g Laboratory

Distributed Objects

B PETSc must provide a mechanism to work with objects that are
distributed across a collection of processors

B Common patterns:

— Err = <THING>Create(parallel-context,<INFO>, <SIZE>,
&object)

— Err = <THING>Destroy(object)
Err = <THING><Operation>(object, <other-parms>)

B For example,
— VecCreate(MPI_COMM_WORLD, PETSC_DECIDE, n, &x)
— MatMult(A, x, y)

B Operations use the same name when possible:
— <THING>SetFromOptions(object)

* Use command line, environment variables, or defaults file to
set basic properties

'A Argonne National
g Laboratory

Vectors in PETSc

B Mathematical Objects

— Not a contiguous section of memory
B Distributed across a set of processes

— May be a subset of all processes in the parallel job
First decision:

* How General a Distribution is allowed for the representation of
data?

e For example, should Ghost cells be allowed? Non-contiguous
sections?

PETSc uses a very simple decomposition

A single, contiguous segment, ordered with the rank of the
processes

« Chosen for performance
Lesson 1: Permit the best performance

Argonne National
Laboratory

‘a

Does PETSc need more general
Vectors?

B So, how do you handle more general decompositions? PETSc
provides several alternatives, depending on the type of generality

— Non-contiguous in process: copy

¢ Not as bad as it seems, as the copy may provide better cache
locality and not be that costly

— Non-contiguous across processes: permutations
e Often better to apply permutations

— Plus, PETSc allows the use of arbitrary representations for
vectors
« But then the user is responsible for implementing all
operations between vectors, and operations on vectors by
other objects, such as matrix-vector product

— Lesson 2: Provide an escape for customization

'A Argonne National 3
o Laboratory

Accessing Elements of a Vector

B The element-wise approach seems simple:
- VIk]=3
B But what is involved with this in a parallel computer?
— One possibility is:
 Retrieve cache line containing v[k] from the current owner of that
cache line if any, assert ownership (flush from owner’s cache)
« Update the bytes corresponding to V[k].
e Write out the data to memory
* When the original owner needs to access (even to read), figure out if
the ownership of the cache line should move
o 1
— There are other options, but they all must handle where data is cached
and how it is updated.
B |s this a good operation to support?
— Rarely a natural mathematical operation
— E.g., usually define entire vector, as in v = f(x,y)
— Setting a single element in a vector is both costly and rarely necessar

Argonne National
Laboratory

Improving Performance of Vector
Element Update

B Lesson 3: Define/Update objects as a single operation
— Defer the “synchronization”; v[k] tells the language that after the
assignment, v[K] is visible anywhere v is defined. This may force
the system to wait until the data is available or to implement
complex caching strategies

— The alternative is relaxed consistency models, which may lead
the programmer to refer to data before it is available (because of
a mismatch between the computer language and these memory
consistency models)
B Instead, define an operation that allows the user to define when the
object must be ready for use. This is a simple generalization of the
notion of matrix assembly

y Argonne National

Assembly

B PETSc uses the notion of object assembly
— First, describe update
— Initiate assembly
¢ Allow other work (Communication/Computation Overlap)
« At least, that was the theory:

— Communication systems require extra hardware support to
effectively overlap communication and computation

— There may not be natural work to insert in this slot
— Wait for the assembly to complete

 Note: still introduces more synchronization than strictly required
(there are possibilities here for improvement)

e This model selected for its simplicity
B This applies to all objects that must be assembled
H Not a new idea
— Same idea used to vectorize sparse matrix assembly
e Same problem - single element updates do not fit vector model

'A Argonne National
g Laboratory

Setting Elements of a Vector

B While changing the vector so that a single element is updated is inefficient, it is simple

B PETSc provides a way to “set/add to an element that will be visible after the assembly
completes”:

— VecSetValue()
B Since many multicomponent PDEs naturally compute/update all the values at a grid
point
— VecSetValues()
m Key features:
— Values set are in the mathematical vector object

« User need not know/understand decomposition of vector representation
across processes

— Values are not available until after Assembly step completes
* VecAssemblyBegin()
¢ VecAssemblyEnd()
— PETSc efficiently manages the implementation of assembly
« Caches data, aggregates values destined to the same process
 Transparent to the user

B Lesson 4: Provide ease-of-use features, even if they are not high-performance. Note
that this is not inconsistent with Lesson 1 (permit high performance).

'A Argonne National
g Laboratory

The Curse of Orthogonality of
Function

B PETSc provides high-performance methods for setting/updating
vectors by providing additional functions that require more expertise

B The VecSetValues approach suffers from
— Excessive routine-call overhead (many load/stores related to
routine call relative to the few loads/stores for the desired
operation)
— Interprocess communication to shift data to the “owing” process
B PETSc provides several alternatives, including
— VecGetOwnershipRange()

« Fixes the second problem (all updates made to local piece of
vector)

— VecGetArray(v, &vStorage)
« Fixes both problems
e But breaks “data hiding/encapsulation”

A Argonne National
N g

Help the User Solve Their Problem

B Lesson 5: It is good to provide multiple ways to perform the same
operation (non-orthogonality of function)

— Unrealistic to achieve ease-of-use and performance with the
same interface

— Itis better to provide multiple interfaces

¢ Also need a way to help guide the user among the different
choices (more on this later) (that's a pointer to built-in
instrumentation)
B This leads us to the next topic: What if your “vector” is really a
mesh?

— Consider the following regular mesh for a simple discretization...

'A Argonne National
g Laboratory

10

A

b Argonne National

Distributed Arrays With Ghost Cells

Data layout and ghost values

Box-type . Star-type
stencil stencil

Laboratory

A

Distributed Arrays as Extensions of

Vectors
B PETSc defines a “Distributed Array” which is a

— Multi-dimensional array
— Optimized for stencil operations by providing “ghost cells”
B Same Issues as for vectors:
— Element-wise operations are easy to describe
— But an application (almost) never applies a stencil to a single
point; always to entire (distributed) array
* May apply different stencils at different points, but that's an
aggregate operation if done properly

b Argonne National

Laboratory -

11

Working With Distributed Arrays

B PETSc chose to only allow fast access to DA’'s memory
— VecGetArray used on DA
* Note: Not DAGetArray! (Why in a few slides)
— Data may still involve a copy (vector may be contiguous)
B Updates of ghost cells done by
— Describe ghost cell needs at the time the DA is created (static)
* Use DAxxx routines to exchange ghost cell data
— Separate begin/end allows this optimization:
DAxxxBegin
Compute using only local data (e.qg., interior of domain)
DAxxxEnd
Compute using the ghost cells

B | esson 6: Provide special purpose objects (not routines!) for
important cases, and then optimize them

'A Argonne National
g Laboratory

Creating a DA

DACreate2d(comm, wrap, type, M, N, m, n, dof, s, Im[], In[], *da)
wrap: Specifies periodicity
DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, ...
type: Specifies stencil
DA_STENCIL_BOX, DA_STENCIL_STAR
M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
S: The stencil width
Im/In: Alternative array of local sizes

'A Argonne National
g Laboratory

12

Generalized Mesh Support

B The key feature of the DA is that it manages the halo exchange for
you; it uses the implicit geometry to determine the data to move

B In a unstructured mesh, the description of required data can be
provided with an index set (more on the next slide).

B PETSc provides vector scatter/gather operations for the distributed
vector

— VecScatterCreate(...)

— Allows creation of an efficient communication schedule for the
scatter/gather operation

B Lesson 7: Allow repeated operations to amortize setup on a per-
object basis

— Other examples: FFT library design
¢ When do you compute internal values?
— Apply to other operations, such as compute loops
« Generalization to code optimization will be touched on later

A Argonne National

A

A

Index Sets

B [SCreate(comm, n, v, &is)
— Creates a special case of a vector
¢ A nonnegative integer valued vector
e May or may not be a permutation
— Knowing whether it is a permutation could provide
performance benefits
— Provides a way to handle more general distributions that PETSc
provides by default
* Maintains the efficiency of contiguous storage while allowing
the generality (but with an explicit cost) of a general
distribution
B L esson Reminder: Keep the operation and the algorithm used to
implement that operation separate
— Scatter has many possible algorithms
— E.g., PARTI etc; different MPI implementations; PGAS/RDMA;
aggregate or eaget, ...

y Argonne National] 1
v Laboratory

13

Object Oriented Design

B Same ideas continue into the Matrix, Linear Solver, Nonlinear
Solver, ...objects and operations
B This is an example of Object-Oriented Design (O-O)
— Define the objects (e.g., Matrix) and the operations that act on
them (methods)
— Think of the objects as a class and consider the natural and
necessary operations upon them
— Internal information, such as the data structures used to
represent the objects or to efficiently operate upon them, are not
exposed to the user of the object (usually)
B O-O provides a implementation strategy for the ideas here
B O-O focuses on the objects, their relationships, and the operations
on and between them. The particular code or function may not be
known until run time (more later)
B O-O can be used in any computer language, though some are easier
than others (PETSc is written almost entirely in C)

,‘ Argonne National
S Laboratory

Inheritance

B [t is typical that one object is an extension of another

B For example, a discretization mesh is a vector with additional
properties, such as the geometric location of each element

B Some operations require this geometric knowledge, e.g., display,
geometric-based preconditioners, while others, such as matrix-vector
product, do not

B In Computer Science, an object (such as a mesh) that extends
another object (such as a vector) is said to inherit from the base
object.

B Inheritance does not require C++ or Java

B Inheritance helps organize the objects in your library by providing a
well-defined taxonomy.

B | esson 8: Use the principles of object-oriented design to help use
hierarchy to structure a library --- use fewer basic concepts to
simplify understanding, and use concepts such as inheritance to help
(even if your computer language does not directly support it).

,‘ Argonne National
S Laboratory

14

Matrices

B What are PETSc matrices?
— Fundamental objects for storing linear operators (e.g., Jacobians)
B Create matrices via
— MatCreate(...,Mat *)
e MPI_Comm - processes that share the matrix
« number of local/global rows and columns
— MatSetType(Mat,MatType)
e where MatType is one of
— default sparse AlJ: MPIAIJ, SEQAIJ
— block sparse AlJ (for multi-component PDEs): MPIAIJ, SEQAIJ
— symmetric block sparse AlJ: MPISBAIJ, SAEQSBAIJ
— block diagonal: MPIBDIAG, SEQBDIAG
— dense: MPIDENSE, SEQDENSE
— matrix-free
- etc.
* MatSetFromOptions(Mat) lets you set the MatType at runtime.

A Argonne National

4 Laboratory - 29

Matrices and Polymorphism

B Single user interface independent of the underlying sparse data structure, e.g.,

— Matrix assembly
* MatSetValues()
— Matrix-vector multiplication
* MatMult()
— Matrix viewing
* MatView()
B Multiple underlying implementations
— AlJ, block AlJ, symmetric block AlJ, block diagonal, dense, matrix-free, etc.
B A matrix is defined by its properties and the operations that you can perform with it.
— Not by its data structures
— (Some operations require efficient access to matrix elements; that only means
that some operations, such as incomplete factor, may not be available if the
matrix uses a matrix-free representation)

B The ability to associate different code for the same abstract operation, depending on
the circumstances (such as the data structure) is called polymorphism. It is a critical
part of the PETSc implementation approach

— Typically implemented with a function pointer
& ooy E B %0

15

Matrix Assembly

B Same form as for PETSc Vectors:
B MatSetValues(Mat,...)
— number of rows to insert/add
— indices of rows and columns
— number of columns to insert/add
— values to add
— mode: [INSERT_VALUES,ADD_VALUES]
B MatAssemblyBegin(Mat)
B MatAssemblyEnd(Mat)

A Argonne National]
g Laboratory

What Advantage Does This Approach
Give You?
B Example: A Poisson Solver in PETSc

— The following 7 slides show a complete 2-d Poisson solver in
PETSc. Features of this solver:

« Fully parallel
e 2-d decomposition of the 2-d mesh

e Linear system described as a sparse matrix; user can select
many different sparse data structures

e Linear system solved with any user-selected Krylov iterative
method and preconditioner provided by PETSc, including
GMRES with ILU, BiCGstab with Additive Schwarz, etc.

« Complete performance analysis built-in
— Only 7 slides of code!

A Argonne National]
g Laboratory

16

Solve a Poisson Problem with Preconditioned GMRES

[* -*- Mode: C; c-basic-offset:4 ; -*- */
#include <math.h>
#include "petscsles.h"
#include "petscda.h"
extern Mat FormLaplacianDA2d(DA, int);
extern Vec FormVecFromFunctionDA2d(DA, int, double (*)(double,double));
/* This function is used to define the right-hand side of the
Poisson equation to be solved */
double func(double x, doubley) {
return sin(x*M_Pl)*sin(y*M_PI); }

PETSC “objects” hide
details of distributed

data structures and
function parameters

int main(int argc, char *argv[])

SLES sles;
Mat A,

b, x;
grid;
int Its, n, px, py, worldSize;

Petsclnitialize(&argc, &argv, 0,0);

/* Get the mesh size. Use 10 by default */
- 10 A

n = 10;

PetscOptionsGetInt(PETSC_NULL, "-n", &n, 0);

/* Get the process decomposition. Default it the same as without

DAs */ PETSc provides
px = 1; > routines to access
PetscOptionsGetInt(PETSC_NULL, “-px", &px, 0); parameters and
MP1_Comm_size(PETSC_COMM_WORLD, &worldSize); defaults

py = worldSize / px;

ibuted array */ J
DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR,
n.n, px,py,1,1,0,0, &grid);

PETSc provides

/* Form the matrix and the vector corresponding to the DA */

A = FormLaplacianDA2d(grid, n); routines to create,
b = FormVecFromFunctionDA2d(grid, n, func); allocate, and
VecDuplicate(b, &x); manage distributed

data structures

17

SLESCreate(PETSC_COMM_WORLD, &sles);

SLESSetOperators(sles, A, A, DIFFERENT_NONZERO_PATTERN);
SLESSetFromOptions(sles); PETSc provides
SLESSolve(sles, b, x, & routines that solve
systems of sparse
PetscPrintf(PEFSC_COMM_WORLD, "Solution is\n"); linear (and

VecView(x, PETSC_VIEWER_STDOUT_WORLD); nonlinear) equations
PetscPrintf(PEFSC_COMM_WORLD, "Required %d iterations\n", its);

MatDestroy(A); VecDestroy(b); VecDestroy(x); PETSc provides
SLESDestroy(sles); DADestroy(grid); coordinated 1/0
PetscFinalize(); (behavior is as-if a
return 0; .

) single process),

including the output of
the distributed “vec”
object

/* -*- Mode: C; c-basic-offset:4 ; -*- */
#include "petsc.h"

#include "petscvec.h"

#include "petscda.h”

/* Form a vector based on a function for a 2-d regular mesh on the
unit square */
Vec FormVecFromFunctionDA2d(DA grid, int n,
double (*f)(double, double))
{

Vec V;

int is, ie, js, je, in, jn, i, j;
double h;

double **vval;

h=1.0/(n+1);
DACreateGlobalVector(grid, &V);

DAVecGetArray(grid, V, (void **)&vval);

18

/* Get global coordinates of this patch in the DA grid */
DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);

ie=is+in-1;
je=js+jn-1;

Almost the uniprocess
for (i=is ; i<=ie ; i++) { code
for (j=js ; j<=je ; j++){
) wval[jJ[i] = *N(([+1)*h, (G +1)*h);

DAVecRestoreArray(grid, V, (void **)&vval);

return V;

}

Creating a Sparse Matrix, Distributed Across All Processes

[* -*- Mode: C; c-basic-offset:4 ; -*- */
#include "petscsles.h"
#include "petscda.h"

/* Form the matrix for the 5-point finite difference 2d Laplacian
on the unit square. n is the number of interior points along a
side */
Mat FormLaplacianDA2d(DA grid, intn’)
{
Mat A;
int r,i,j,is,ie, js, je, in, jn, nelm;
MatStencil cols[5], row; Creates a pal’a”e|

double b, oneByh?2, vals[5]; distributed matrix using
compressed sparse row

o format
DAGetMatrix(grid, MATMPIAILJ, &A);
Get-global-coordinates-of thispa n the DA grid */
DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);
ie=is+in-1;
je=js+jn-1;

h=1.0/(n+1); oneByh2 = 1.0/ (h*h);

19

for (i=is; i<=ie; i++) {
for (j=js;_is=je;
oY.J = j; row.i = i; nelm = 0;
if(G-1>0){
vals[nelm] = oneByh2;
cols[nelm].j =j - 1; cols[nelm++].i = i;}

Just the usual
code for setting

if(i-1>0){
vals[nelm] = oneByh2; the elements of
cols[nelm].j=j; cols[nelm++].i=1i-1;} the sparse matrix
vals[nelm] = -4 * oneByh2; (the complexity
cols[nelm].j = j; cols[nelm++].i = 1i; .
if(i+1<n-1){ comes, as it often

does, from the
boundary
conditions

vals[nelm] = oneByh2;

cols[nelm].j =j; cols[nelm++].i=1i+1;}
ifG+1l<n-1){

vals[nelm] = oneByh2;

cols[nelm].j = j + 1; cols[nelm++].i =4;
MatSetValuesStencil(A, 1, &row, nelm,
INSERT_VALUES);

G

}

MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);

return A;

Full-Featured PDE Solver

B Command-line control of Krylov iterative method (choice of
algorithms and parameters)

B Integrated performance analysis
B Optimized parallel sparse-matrix operations

B Question: How many MPI calls used in example?

A Argonne National

Aa

20

Setting Solver Options at Runtime

B -ksp_type [cg,gmres,bcgs,tfqmr,...]
-pc_type [lu,ilu,jacobi,sor,asm,...]

etc ...

A Argonne National

A

-ksp_max_it <max_iters>
-ksp_gmres_restart <restart>
-pc_asm_overlap <overlap>

-pc_asm_type [basic,restrict,interpolate,none]

Laboratory
SLES: Selected Preconditioner Options
Functionality Procedural Interface Runtime Option
Set preconditioner type -pc_type [lu,ilu,jacobi,
sor,asm,...]
Set level of fill for ILU PCILUSetLevels() -pc_ilu_levels <levels>
Set SOR iterations PCSORSetlterations() -pc_sor_its <its>
Set SOR parameter PCSORSetOmega() -pc_sor_omega <omega>
Set additive Schwarz PCASMSetType() -pc_asm_type [basic,
variant restrict,interpolate,none]
Set subdomain solver ~ PCGetSubSLES() -sub_pc_type <pctype>
options -sub_ksp_type
<ksptype>
-sub_ksp_rtol <rtol>
And many more options...
A Argonne National - B

Laboratory

21

SLES: Selected Krylov Method Options

Functionality Procedural Interface Runtime Option
Set Krylov method KSPSetType() -ksp_type [cg,gmres,bcgs,
tfgmr,cgs,...]
Set monitoring KSPSetMonitor() -ksp_monitor, —ksp_xmonitor,
routine -ksp_truemonitor, -

ksp_xtruemonitor

Set convergence KSPSetTolerances() -ksp_rtol <rt> -ksp_atol <at>
tolerances -ksp_max_its <its>

Set GMRES restart KSPGMRESSetRestart() -ksp_gmres_restart <restart>
parameter

Set orthogonalization KSPGMRESSet -ksp_unmodifiedgramschmidt
routine for GMRES Orthogonalization() -ksp_irorthog

And many more options...

A Argonne National]
g Laboratory

Computer Science Lessons

B Organize around user-centric concepts
— PETSc used the mathematics

— Provide all that is necessary to manage the objects, not just the
“key” functions

B Exploit Computer Science techniques to provide that interface
— Data Encapsulation and Data Hiding
— Polymorphism
— Inheritance

B Pay attention to performance

A Argonne National]
g Laboratory

22

Numerical Analysis Lessons

B Algorithms!
— Get the right ones
— Get the scalable parallel ones
— Note that there is (rarely) a unique best choice
e Implies that the software must support many algorithms
e This is why PETSc organized by problems-to-solve rather than
algorithms
— This may be the most important lesson: Organize by
mathematical problem

‘ Argonne National
Laboratory

Its Not Just Good Design

B Distribution and Installation must be easy and robust
B Example: Dealing with system dependencies
— By system name
« Bad idea - properties change, feature sets may vary
— By capability
¢ Requires tests
— Neither as good as you'd like
¢ GNU autoconf, PETSc's is custom python-based
B The devil is in the details
— We have a long list of problems that we’'ve encountered with other libraries
« Using customized, incompatibly replacements for some of LAPACK or BLAS
« Making global definitions in header files of common names
— This is the Ninth Lesson: Design and code for portability; base on the correct
capability abstractions , not system name
« E.g., don't have *ifdef LINUX !

‘ Argonne National
Laboratory

23

The Application Ecosystem

B PETSc expects to be a peer component in the application
— Must be part of a ecosystem of software
— Working with other libraries
B Common problems in establishing a working ecosystem:
— Source problems, conflicting headers
¢ (C++ namespaces, can't use #define)
— Data structure mismatch implies copy
« Could we define a source template?
— Parallel Issues
e OpenMP / MPI
¢ Nesting of threads
e Use of COMM_WORLD
B This is the Tenth Lesson: Design to work with other libraries

A Argonne National]
g Laboratory

Challenges for the Future

B This is my personal view
What does PETSc (and other libraries) need?
m Alternate Distribution Models
— Web based access to services
— GUI to help with installation options (e.g., finding BLAS)
B Testing

— Coverage tests - MPICH2 provides a web-based summary of coverage test results
(http://www-unix.mcs.anl.gov/mpi/mpich2/todo/coverage/ch3:sock/index.htm)

— Automation of problem reports
« E.g., canonical build digest
m Algorithm Updates
— Libraries require performance and correctness contracts
m Performance Tuning
— Must be automated to be maintainable and affordable
— One approach is the use of performance annotations and source-to-source transformations
< In simplest form, helps with optimizations that are sensitive to data alignment

* More sophisticated forms apply complex transformations for cache, register, and non-
cache memory (e.g., for GPGPU)

A Argonne National]
g Laboratory

24

Programming Languages, Scalability, and
Performance

— Parallel Programming Confusion
e MPI? + Threads? GPGPU? UPC? Other PGAS languages?
¢ How can we move forward?
— Source to source transformations
¢ Regardless of language, additional help will be required to ensure
good performance
¢ Reduce library overhead
— Especially in object assembly
— PETSCc's routine based method has too much overhead,
VecGetArray is too dangerous and error-prone
e Cross-module and library data structures
- E.g., Templates without full C++ to avoid large compilation times,
neglected optimizations (because of code complexity)
« Performance specialization in library

— For example, system-specific alignment pragmas or pseudo-
functions, such as those required by IBM's BlueGene

A Argonne National]
g Laboratory

Performance Optimization

B One of the keys to success
— This was the first Lesson: provide competitive performance, and be able to prove
it
B Integrate performance instrumentation
— Allows the user to tune code
« E.g., switch between easier-to-use convenience functions and more efficient
(but more complex) approaches
— Assembly is an example - element-wise vs block vs direct access to data
structures
B Code specialization
— Compilers need help
« The existence of vendor-supplied DGEMM proves it - otherwise, you could just
compile the reference implementation.
— Code manually unrolled in PETSc
« Optimized for Power architecture
— Not optimal, even for Power
* Need for more effective methods; autotuning is one possibility
— The following slides, provided by Kathy Yelick of UCBerkeley and LBNL,
show why autotuning may be needed

A Argonne National]
g Laboratory

25

Speedups on Itanium 2: The need for

search
900 MHz [tanium 2, Intel C v8: ref=275 Mflop/s

1120 Mflop/s
1080 (31.1%)
1030

980

930

830

830

780

730

680

630

580

530

480

430

380

330
580 Mflop/s

1 2 4 8 (7.6%)
column block size (c)

Best: 4x2

n

row block size (r)

Reference

A Argonne National

A Laboratory

333 MHz Sun Ultra 2i, Sun C v6.0: ref=35 Mflop/s 900 MHz Ultra 3, Sun CC vé6: ref=54 Mflop/s

rS

~

row block size (r)
row block size (r)

1 2 4 8 1 2 4 8
column block size (c) column block size (c)

2 GHz Pentium M, Intel C v8.1: ref=308 Mflop/s 1.4 GHz Opteron, gcc 3.4.2: ref=308 Mflop/s
4

440
430
1.28 122 g 420

410
400
1.25 127 1.22 390
380
370
360
350
340

rS

row block size (r)

=
@
N
7]
x
=3
2
o
g

O 118 | 119 | 128 320
310

1 2 4q 8 1 2 4
column block size (c) column block size (c)

26

row block size (r)

8 1.07 1.08
4 111 116 24
[
x
3
Q
% 1.08 113 1.04 3
'l 1.00 1.1 1.19 1.1 1.06

row block size (r)

375 MHz Power3, IBM xlc v6: ref=145 Mflop/s

1.3 GHz Powerd, IBM xlc v6: ref=577 Mflop/s

1

800 MHz Itanium, Intel C v7: ref=146 Mflop/s

8 1

2 4
column block size (c)
900 MHz Itanium 2, Intel C v8: ref=275 Mflop/s

2 4
column block size (c)

row block size (r)

A=A NINIWW B B NUNDOI NI NEOHOO OO -4 —AN>
OUNONONOUNOUNONONONONONONO

2 4 2 4
column block size (c) column block size (c)

Lessons

1. Permit the best performance

2. Provide an escape for customization

3. Define/Update objects as a single operation

4. Provide ease-of-use features, even if they are not high-
performance

5. Itis good to provide multiple ways to perform the same operation
(non-orthogonality of function)

6. Provide special purpose objects (not routines!) for important
cases, and then optimize them

7. Allow repeated operations to amortize setup on a per-object basis

8. Use the principles of object oriented design to help use hierarchy
to structure a library

9. Design and code for portability; base on the correct capability
abstractions, not system name

10. Design to work with other libraries

A Argonne National F
A Laboratory - 54

27

Final Comments

B The Success of PETSc is due to:
— Performance and Scalability
— Consistent interface based on the mathematical problems
— Completeness
« Can overcome “ease of use”
— Attention to portability and configuration issues
« Particularly for libraries coming from research groups, this is often the critical
factor
 Portability requires care but isn’t hard. It does require
— Knowing the relevant standards (or at least the subsets that are used)
— Having and following coding standards developed by someone with
experience
Exploiting software tools (e.g., compiler switches, coding style checkers)
to audit the source
B A Key Advantage to the PETSc approach
— Algorithm Independence
< Until we know the best way, don’t make the choice
« Users can try new algorithms without giving up the ones with which they are
comfortable

A Argonne National
a0 -

Laboratory

28

