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Computing in the  
Trans-PetaFLOP Era 

William Gropp 
www.cs.uiuc.edu/homes/wgropp 

2 

PetaFLOPS are Here 
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NSF’s Strategy for High-end 
Computing 

FY’07 FY’11 FY’10 FY’09 FY’08 
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Track 1 System 

Track 2 Systems 

UIUC/NCSA ( 1 PF sustained) 

TACC (500+TF) 

UT/ORNL (~1PF) 

Track 2d 

PSC (?) ? 

Leading University HPC Centers Track 3 Systems 
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Blue Waters Computing 
System 

System Attribute Abe Blue Waters 

Vendor Dell IBM 

Processor Intel Xeon 5300 IBM Power7 

Peak Performance (TF) 0.090 

Sustained Performance (TF) 0.005 1PF Full System 

Number Cores/Chip 4 multicore 

Number Processor Cores 9,600 >200,000 

Amount Memory (TB) 14.4 >800 

Amount Disk Storage (TB) 100 >10,000 

Amount of Archival Storage 

(PB) 

5 >500 

External Bandwidth (Gbps) 40 >100 
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Petascale Computing Facility 

• Modern Data Center 

• 90,000+ ft2 total 

• 20,000 ft2 machine room 

• Energy Efficiency 

• LEED Silver certified (maybe gold) 

• Efficient cooling system 

Partners 

 EYP 

MCF/ 

 Gensler 

 IBM 

 Yahoo! 
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Could there be applications 
at 1,000,000 cores? 

• The answer is clearly yes 
- a sequence of reports, 
including SciDAC, DOE 
Exascale, and others 
have shown that there is 
a need of computing at 
the scale that will require 
(with our current 
understanding of the 
technology) 1,000,000 
cores. 

• But how many 
applications are really 
ready? 

www.appsmatrix.info/ 

for some application 

data 

• But only “top-level” 

details 
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Will they work? 

• We don’t know – we don’t have enough 
information 

More precisely, we know some will work 

• There is lots of anecdotal evidence that 
we can develop scalable codes 

Qbox, NAMD, Nek, … 

• Consider this debate challenge: 
Defend the statement: 
• These codes will scale 

Defend the statement: 
• These codes will not scale 

Which side would you rather take today? 
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Quotes from “System Software and Tools for High 
Performance Computing Environments” (1993) 

• “The strongest desire expressed by these users was simply to 

satisfy the urgent need to get applications codes running on 
parallel machines as quickly as possible” 

• In a list of enabling technologies for mathematical software, 
“Parallel prefix for arbitrary user-defined associative operations 
should be supported.  Conflicts between system and library (e.g., 

in message types) should be automatically avoided.” 

Note that MPI-1 provided both 

• Immediate Goals for Computing Environments: 

Parallel computer support environment 

Standards for same 

Standard for parallel I/O 

Standard for message passing on distributed memory machines 

• “The single greatest hindrance to significant penetration of MPP 
technology in scientific computing is the absence of common 
programming interfaces across various parallel computing 

systems” 
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Programming For 
Petascale Systems 

• Lets look at where we are and where 
we could be 

MPI 

• Reasons for its success and how to replace MPI 

Petsc 
• Abstraction as a key tool 

Single node performance 
• The elephant in the living room 

Hybrid programming models 

• A first step toward a more productive software 
model 
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Why Was MPI Successful? 

• It address all of the following 
issues: 

Portability 

Performance 

Simplicity and Symmetry 

Modularity 

Composability 

Completeness 
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Portability and Performance 

• Portability does not require a “lowest common 
denominator” approach 

Good design allows the use of special, performance enhancing 
features without requiring hardware support 

For example, MPI’s nonblocking message-passing semantics 
allows but does not require “zero-copy” data transfers 

• MPI is really a “Greatest Common Denominator” approach 

It is a “common denominator” approach; this is portability 

• To fix this, you need to change the hardware (change “common”) 

It is a (nearly) greatest approach in that, within the design 
space (which includes a library-based approach), changes 
don’t improve the approach 

• Least suggests that it will be easy to improve; by definition, any 
change would improve it. 

More on “Greatest” versus “Least” later … 
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Simplicity and Symmetry 

• MPI is organized around a small 
number of concepts 

The number of routines is not a good 
measure of complexity 

E.g., Fortran 
• Large number of intrinsic functions 

C and Java runtimes are large 

Development Frameworks 
• Hundreds to thousands of methods 

This doesn’t bother millions of 
programmers 
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Symmetry 

• Exceptions are hard on users 

But easy on implementers — less to implement and test 

• Example: MPI_Issend 

MPI provides several send modes: 

• Regular, Synchronous, Receiver Ready, Buffered 

Each send can be blocking or non-blocking 

MPI provides all combinations (symmetry), including the 
“Nonblocking Synchronous Send” 

• Removing this would slightly simplify implementations 

• Now users need to remember which routines are provided, rather 
than only the concepts 

It turns out he MPI_Issend is useful in building performance 
and correctness debugging tools for MPI programs 

• Some symmetries may not be worth the cost 

MPI cancel of send 

• Not just a complexity for the user - real cost to implementation 
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Modularity 

• Many modern algorithms are 
hierarchical 

Do not assume that all operations 
involve all or only one process 

Software tools must not limit the user 

• Modern software is built from 
components 

MPI designed to support libraries 

Communication contexts in MPI are an 
example 
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Composability 

• Environments are built from components 
Compilers, libraries, runtime systems 

MPI designed to “play well with others” 

• MPI exploits newest advancements in 
compilers 

… without ever talking to compiler writers 

OpenMP is an example 
• MPI (the standard) required no changes to work with 

OpenMP 

• MPI Thread modes provided for performance reasons 

• MPI was designed from the beginning to work 
within a larger collection of software tools 

What’s needed to make MPI better?  More good 
tools! 
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Completeness 

• MPI provides a complete parallel programming 
model and avoids simplifications that limit the 
model 

Contrast: Models that require that synchronization 
only occurs collectively for all processes or tasks 

Contrast: Models that provide support for a 
specialized (sub)set of distributed data structures 

• Make sure that the functionality is there when 

the user needs it 
Don’t force the user to start over with a new 
programming model when a new feature is needed 
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Conclusions: 
Lessons From MPI 

• A successful parallel programming model must enable more 
than the simple problems 

It is nice that those are easy, but those weren’t that hard to 
begin with 

• Scalability is essential 

Why bother with limited parallelism? 

Just wait a few months for the next generation of hardware 

• Performance is equally important 

But not at the cost of the other items  

• It must also fit into the Software Ecosystem 

MPI did not replace the languages 

MPI did not dictate particular process or resource management 

MPI defined a way to build tools by replacing MPI calls 

(later) Other interfaces, such as debugging interface, also let 
MPI interoperate with other tools 
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Issues that are not Issues  

• Latency 

Users often confuse Memory access times and CPU 
times; expect to see remote memory access times 
on the order of register access 

Without overlapped access, a single memory 
reference is 100’s to 1000’s of cycles 

A load-store model for reasoning about program 
performance isn’t enough 

• Don’t forget memory consistency issues 

• MPI “Buffers” as a scalability limit 

This is an implementation issue that existing MPI 
implementations for large scale systems already 
address 

• Buffers do not need to be preallocated 
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Fault Tolerance 
 (As an MPI Problem) 

• Fault Tolerance is a property of the 
application; there is no magic solution 

• MPI implementations can support fault 
tolerance 

• MPI intended implementations to continue 

through faults when possible  
That’s why there is a sophisticated error reporting 
mechanism 

What is needed is a higher standard of MPI 
implementation, not a change to the MPI standard 

• But - Some algorithms do need a more 
convenient way to manage a collection of 
processes that may change dynamically 
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Challenges 

• Must avoid the traps:  

The challenge is not to make easy programs 
easier.  The challenge is to make hard programs 
possible. 

We need a “well-posedness” concept for 
programming tasks 

• Small changes in the requirements should only require 
small changes in the code 

• Rarely a property of “high productivity” languages 

Abstractions that make easy programs easier don’t solve 
the problem 

Latency hiding is not the same as low latency 

• Need “Support for aggregate operations on large 
collections” 
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Even Harder Challenges 

• Make it hard to write incorrect 
programs. 

In general, current shared memory 

programming models are very dangerous. 

• They also perform action at a distance 

• They require a kind of user-managed data 
decomposition to preserve performance without 
the cost of locks/memory atomic operations 

Deterministic algorithms should have 

provably deterministic implementations 

• Some efforts for shared memory/multicore 
programming are also addressing this issue 
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What’s the Real Issue 
with MPI? 

• MPI does not address the management of distributed data 
structures 

Not that it does badly; it is an orthogonal issue 

• Languages that provide support for distributed data 
structures have productivity advantages for those data 
structures 

What if you don’t have that sort of data structure? 

• This does not mean that we can’t significantly improve on 
MPI, but we must not reduce the space of algorithms and 
programs by reducing the available data structures 

Alternatives include building tools to support domain-specific 
(distributed) data structures, exploiting advances in compiler 

and source-to-source transformation infrastructure, extending 

existing languages 

Languages are also including more general support, but the 
general distribution/decomposition problem is extremely difficult  
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How to Replace MPI  

• Retain MPI’s strengths 

Performance from matching programming model to the 
realities of underlying hardware 

Ability to compose with other software (libraries, compilers, 
debuggers) 

Determinism (without MPI_ANY_{TAG,SOURCE}) 

Run-everywhere portability 

• Add to what MPI is missing, such as 
Distributed data structures (not just a few popular ones) 

Low overhead remote operations; better latency hiding/
management; overlap with computation 

Dynamic load balancing for dynamic, distributed data 
structures 

Unified method for treating multicores, remote processors, 
other resources 

• Enable the transition from MPI programs 

Build component-friendly solutions 
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Is MPI the Least Common 
Denominator Approach? 

• “Least common denominator” 

Not the correct term 

It is “Greatest Common Denominator”! (Ask any 
Mathematician) 

This is critical, because it changes the way you make 
improvements 

• If it is “Least” then improvements can be made by 
picking a better approach.  I.e., anything better than 
“the least”. 

• If it is “Greatest” then improvements require changing 
the rules: either the available architectural support 
(“Denominator”), the scope (“Common”), or the goals 
(how “Greatest” is evaluated) 

• Where can we change the rules for MPI? 
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Changing the Common 

• Give up on ubiquity/portability and aim for a subset of 
architectures 

Vector computing was an example (and a cautionary tale) 

Possible niches include 
• SMT for latency hiding 

• Reconfigurable computing; FPGA 

• Stream processors 

• GPUs 

• Etc. 

• Not necessarily a bad thing (if you are willing to accept 
being on the fringe) 

Risk: Keeping up with the commodity curve (remember 
vectors) 

Is GPGPU the fringe or the emerging commodity 
processor? 

• And GPGPUs might only change the node programming model 
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Changing the Denominator 

• This means changing the features that are assumed present in 

every system on which the programming model must run 

• Some changes since MPI was designed: 

RDMA Networks 

• Best for bulk transfers 

• Evolution of these may provide useful signaling for shorter transfers 

Cache-coherent SMPs (more precisely, lack of many non-cache-

coherent SMP nodes) 

Exponentially increasing gap between memory and CPU performance 

Better support for source-to-source transformation 

• Enables practical language solutions 

• If DARPA HPCS is successful at changing the “base” HPC systems, 
we may also see 

Remote load/store, remote simple ops 

Hardware support for hiding memory latency 
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Changing the Goals 

• Change the space of features 

That is, change the problem definition so that there 
is room to expand (or contract) the meaning of 
“greatest” 

• Some possibilities 
Integrated support for concurrent activities  

• Not threads: 

“Night of the Living Threads”, 
http://weblogs.mozillazine.org/roc/archives/2005/12/
night_of_the_living_threads.html, 2005 

“Why Threads Are A Bad Idea (for most purposes)” John 
Ousterhout  (~2004) 

Support for (specialized or general) distributed data 
structures 
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Issues for MPI in the  
Trans-Petascale Era 

• Complement MPI with support for  
Distributed (possibly dynamic) data structures 

Improved node performance (including multicore) 
• May include tighter integration, such as MPI+OpenMP with 

compiler and runtime awareness of both 
• Must be coupled with latency tolerant and memory hierarchy 

sensitive algorithms 

Fault detection and tolerance 
Load balancing 

• Address the real memory wall - latency 
Likely to need hardware support + programming models to 
handle memory consistency model  

• MPI RMA model needs updating 
To match locally cache-coherent hardware designs 
Add better atomic remote op support 

• Parallel I/O model needs more support 
For optimal productivity of the computational scientist, 
data files should be processor-count independent 
(canonical form) 
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Abstraction in Programming 

• Must get away from requiring the 
management of each detail 

• More software will / should be built based 
on capabilities 

Virtualization – abstracts processor resources 
• Provides a powerful tool for load balancing, fault 

handling 

Routines organized by function rather than 
data structure and/or algorithm provide 
greater flexibility 
• A different solution to the “multicore”/parallel 

programming problem 

• An example is another project I’ve had the pleasure 
to start … 
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What is PETSc? 

• PETSc is a numerical library  

Organized around mathematical concepts needed to 
solve PDEs 

• PETSc began as a tool to aid in research into 
domain decomposition methods for PDEs.   

A new library was needed because 

• Numerical libraries organized around particular algorithms, 
rather than mathematical problems, making 
experimentation with different algorithms difficult 

• Most libraries were not re-entrant, making recursive use 
impossible 

• PETSc is now used by both applications scientists 

and researchers (100’s of users including DOE 
and NSF leadership computing platforms) 
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What Advantage Does This 
Approach Give You? 

• Example: A Poisson Solver in PETSc 
The following slides show the core of a 
complete 2-d Poisson solver in PETSc.  
Features of this solver: 
• Fully parallel 

• 2-d decomposition of the 2-d mesh 

• Linear system described as a sparse matrix; user 
can select many different sparse data structures 

• Linear system solved with any user-selected 
Krylov iterative method and preconditioner 
provided by PETSc, including GMRES with ILU, 
BiCGstab with Additive Schwarz, etc. 

• Complete performance analysis built-in 

The full example is only 7 slides of code! 
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#include <math.h> 

#include "petscsles.h" 

#include "petscda.h" 

int main( int argc, char *argv[] ) 

{ 

    SLES       sles;    Mat        A;    Vec        b, x;    DA         grid; 

    int        its, n, px, py, worldSize; 

    PetscInitialize( &argc, &argv, 0, 0 );     

… 

    DACreate2d( PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR, 

  n, n, px, py, 1, 1, 0, 0, &grid ); 

    A = FormLaplacianDA2d( grid, n ); 

    b = FormVecFromFunctionDA2d( grid, n, func ); 

    VecDuplicate( b, &x ); 

    SLESCreate( PETSC_COMM_WORLD, &sles ); 

    SLESSetOperators( sles, A, A, DIFFERENT_NONZERO_PATTERN ); 

    SLESSetFromOptions( sles ); 

    SLESSolve( sles, b, x, &its ); 

    PetscPrintf( PETSC_COMM_WORLD, "Solution is:\n" ); 

    VecView( x, PETSC_VIEWER_STDOUT_WORLD ); 

    PetscPrintf( PETSC_COMM_WORLD, "Required %d iterations\n", its ); 

   … 

    PetscFinalize( ); 

    } 

Solve a Poisson Problem with 
Preconditioned GMRES 

PETSc provides 
coordinated I/O 
(behavior is as-if a 
single process), 
including the output 
of the distributed 
“vec” object 

PETSc provides 
routines that solve 
systems of sparse 
linear (and 
nonlinear) equations 

Define a distributed 
data structure 
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Why Was PETSc a Success? 

• The success of PETSc is due to: 
Performance and Scalability 

• Performance is only weakly correlated with FLOPS 

Consistent interface based on the mathematical 
problems 
Completeness 

• Can overcome “ease of use”  

Attention to portability and configuration issues 
• Often the critical factor 

• Portability requires care but isn’t hard.   

• A key advantage to the PETSc approach 
Algorithm Independence 

• Until we know the best way, don’t make the choice 

• Users can try new algorithms without giving up the 
ones with which they are comfortable 

• Note that PETSc succeeded for many of the 
same reasons as MPI! 
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Addressing Single Node 
Performance 

• Single node and single 
thread performance remains 
a major challenge  

• The “low fraction of peak 
performance of parallel 
computers is really just the 
poor single core performance 

• We need to extend 
“compilation” to involve 3rd-
party, specialized software 

Autotuners 

Domain-specific languages 

Composable Language 
extensions through 

annotations 

• Common theme: 
Build interoperable 
components 

• Which brings us to 

hybrid programming 
models 

7X 
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Myths About the Hybrid 
Model 

1. Never works 
Examples from FEM assembly, others show benefit 

2. Always works 
Examples from NAS, EarthSim, others show MPI 
everywhere often as fast as hybrid models 

3. Requires special MPI 
In many cases does not; in others, requires a level 
defined in MPI-2 

4. Harder to program  
Harder than what? 

Really the classic solution to complexity - divide problem 
into separate problems 

• 10000-fold coarse-grain parallelism + 100-fold fine-grain 
parallelism gives 1,000,000-fold total parallelism 
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Where Do OpenMP + MPI 
Work Well? 

• Compute-Bound Loops 
This can happen in some kinds of matrix assembly, for 
example. 

• Fine-grain parallelism 
E.g., in blocked preconditioners, where fewer, larger 
blocks, each managed with OpenMP, as opposed to more, 
smaller, single-threaded blocks in the all-MPI version, 
gives you an algorithmic advantage (e.g., fewer 
iterations). 

• Load Balancing 
Where the computational load isn't exactly the same in all 
threads/processes; this can be viewed as a variation on 
fine-grained access.  

• Memory bound loops 
Where read data is shared, so that cache memory can be 
used more efficiently.     
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New Programming Models 

• We can look at more than just MPI + OpenMP 

• PGAS languages offer another tool for building parallel 
components 

• UPC/CAF/MPI interoperability 

Provides a way to incrementally exploit new 
programming models 

Using “local” data items 

• Why PGAS? 

Load-store model may permit more efficient 
communication of small data items 

Using many smaller tasks can improve scalability 

• Adaptive load balancing (move tasks around as necessary) 

May be able to overlap communication and computation 
more effectively 
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More General MPI Hybrid 
Programming Models 

• Why consider the Hybrid Model with PGAS or 
other programming models? 

Load balancing 

Shared data (reduce memory pressure, particularly 
for processor-rich (and hence memory poor) nodes) 

Component software (use the best programming 
model to implement a component) 

OpenMP and MPI understood 

What about others:  MPI/UPC (or PGAS) 
interoperability 

• Possible combinations for MPI and UPC (or 
other PGAS) languages include: 

MPI processes are UPC programs 

MPI processes are UPC threads 

UPC Programs are combined into MPI programs 
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MPI Processes are UPC 
Threads 

• The program starts as a single 
UPC program.  Each UPC thread 
calls MPI_Init (or 
MPI_Init_thread). The process 
management system must 
permit UPC programs to use 
MPI_Init to also become MPI 
programs.  

• The program starts as a single 
MPI program (started with 
mpiexec). UPC is initialized 
somehow 

UPC initialized explicitly with a 
routine call 

UPC initialized implicitly 
because UPC compiler knew this 
was an MPI + UPC program 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 
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MPI Processes are  
UPC Programs 

• MPI Processes are 
UPC programs (not 
threads), spanning 
multiple nodes.  This 
model is the closest 
counterpart to the 
MPI+OpenMP model, 
using PGAS to 
extend the "process" 
beyond a single 
node.  (An MPI 
process need not be 
an OS process). 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

MPI Process/ 
UPC Program 
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Component-Oriented 
Software Solutions 

• Hybrid programming models exploit complementary 
strengths 

• Evolutionary Path to Hybrid Models 

Short term - better support for resource sharing 
• We need to experiment with specifying additional information, 

e.g., through mpiexec 

Medium term - better support for interoperating 
components 

• We need to ensure that communication infrastructures can 
cooperate 

• Consider extensions to make implementations aware that they 
are in a hybrid model program 

Long term - Generalized model, efficient sharing of 
communication and computation infrastructure 

• Other approaches also build on software 
components 
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We are in this Together 

• Support community activities 

MPI Forum 

Software consortiums, BOFs, … 

Come to SC09 in Portland! 

• Build collaborations 

At Illinois, we have many parallel computing activities 

• NSCA (Blue Waters), UPCRC (Multicore Programming), Cloud 

Computing, IACAT, Research in CS and ECE departments, … 

Parallel@Illinois (www.parallel.illinois.edu  Booth 2040) 

• Serves as an umbrella for Illinois efforts 

• Many other efforts around the world 
• Great Lakes Consortium for Petascale Computation 

• By developing approaches and tools that can 
interoperate, we can address the daunting problem of 
programming trans-petaflop and exeflop systems 
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Conclusions 

• We have strategies that have and will 
serve us well 

Proper use of abstraction 

Better use of components 
• Specialized compilation and tuning tools 

• Domain-specific languages 

• New(er) languages that can interoperate with 
existing codes 

• Community efforts are critical 
MPI Forum (meetings.mpi-forum.org) 

Open Software Consortiums (stay tuned) 
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Thanks! 

• Thanks to you for your attention 

• Thanks to my many co-workers 
and collaborators 

• Thanks to the Department of 
Energy, the National Science 
Foundation, and the HDF Group for 

their support 


