
11/21/08

1

Computing in the
Trans-PetaFLOP Era

William Gropp
www.cs.uiuc.edu/homes/wgropp

2

PetaFLOPS are Here

11/21/08

2

3

NSF’s Strategy for High-end
Computing

FY’07 FY’11 FY’10 FY’09 FY’08

S
ci

en
ce

 a
n

d
 E

n
g
in

ee
ri

n
g
 C

a
p

a
b

il
it

y

(l
o

g
a

ri
th

m
ic

 s
ca

le
)

Track 1 System

Track 2 Systems

UIUC/NCSA (1 PF sustained)

TACC (500+TF)

UT/ORNL (~1PF)

Track 2d

PSC (?) ?

Leading University HPC Centers Track 3 Systems

4

Blue Waters Computing
System

System Attribute Abe Blue Waters

Vendor Dell IBM

Processor Intel Xeon 5300 IBM Power7

Peak Performance (TF) 0.090

Sustained Performance (TF) 0.005 1PF Full System

Number Cores/Chip 4 multicore

Number Processor Cores 9,600 >200,000

Amount Memory (TB) 14.4 >800

Amount Disk Storage (TB) 100 >10,000

Amount of Archival Storage

(PB)

5 >500

External Bandwidth (Gbps) 40 >100

11/21/08

3

5

Petascale Computing Facility

• Modern Data Center

• 90,000+ ft2 total

• 20,000 ft2 machine room

• Energy Efficiency

• LEED Silver certified (maybe gold)

• Efficient cooling system

Partners

 EYP

MCF/

 Gensler

 IBM

 Yahoo!

6

Could there be applications
at 1,000,000 cores?

• The answer is clearly yes
- a sequence of reports,
including SciDAC, DOE
Exascale, and others
have shown that there is
a need of computing at
the scale that will require
(with our current
understanding of the
technology) 1,000,000
cores.

• But how many
applications are really
ready?

www.appsmatrix.info/

for some application

data

• But only “top-level”

details

11/21/08

4

7

Will they work?

• We don’t know – we don’t have enough
information

More precisely, we know some will work

• There is lots of anecdotal evidence that
we can develop scalable codes

Qbox, NAMD, Nek, …

• Consider this debate challenge:
Defend the statement:
• These codes will scale

Defend the statement:
• These codes will not scale

Which side would you rather take today?

8

Quotes from “System Software and Tools for High
Performance Computing Environments” (1993)

• “The strongest desire expressed by these users was simply to

satisfy the urgent need to get applications codes running on
parallel machines as quickly as possible”

• In a list of enabling technologies for mathematical software,
“Parallel prefix for arbitrary user-defined associative operations
should be supported. Conflicts between system and library (e.g.,

in message types) should be automatically avoided.”

Note that MPI-1 provided both

• Immediate Goals for Computing Environments:

Parallel computer support environment

Standards for same

Standard for parallel I/O

Standard for message passing on distributed memory machines

• “The single greatest hindrance to significant penetration of MPP
technology in scientific computing is the absence of common
programming interfaces across various parallel computing

systems”

11/21/08

5

9

Programming For
Petascale Systems

• Lets look at where we are and where
we could be

MPI

• Reasons for its success and how to replace MPI

Petsc
• Abstraction as a key tool

Single node performance
• The elephant in the living room

Hybrid programming models

• A first step toward a more productive software
model

10

Why Was MPI Successful?

• It address all of the following
issues:

Portability

Performance

Simplicity and Symmetry

Modularity

Composability

Completeness

11/21/08

6

11

Portability and Performance

• Portability does not require a “lowest common
denominator” approach

Good design allows the use of special, performance enhancing
features without requiring hardware support

For example, MPI’s nonblocking message-passing semantics
allows but does not require “zero-copy” data transfers

• MPI is really a “Greatest Common Denominator” approach

It is a “common denominator” approach; this is portability

• To fix this, you need to change the hardware (change “common”)

It is a (nearly) greatest approach in that, within the design
space (which includes a library-based approach), changes
don’t improve the approach

• Least suggests that it will be easy to improve; by definition, any
change would improve it.

More on “Greatest” versus “Least” later …

12

Simplicity and Symmetry

• MPI is organized around a small
number of concepts

The number of routines is not a good
measure of complexity

E.g., Fortran
• Large number of intrinsic functions

C and Java runtimes are large

Development Frameworks
• Hundreds to thousands of methods

This doesn’t bother millions of
programmers

11/21/08

7

13

Symmetry

• Exceptions are hard on users

But easy on implementers — less to implement and test

• Example: MPI_Issend

MPI provides several send modes:

• Regular, Synchronous, Receiver Ready, Buffered

Each send can be blocking or non-blocking

MPI provides all combinations (symmetry), including the
“Nonblocking Synchronous Send”

• Removing this would slightly simplify implementations

• Now users need to remember which routines are provided, rather
than only the concepts

It turns out he MPI_Issend is useful in building performance
and correctness debugging tools for MPI programs

• Some symmetries may not be worth the cost

MPI cancel of send

• Not just a complexity for the user - real cost to implementation

14

Modularity

• Many modern algorithms are
hierarchical

Do not assume that all operations
involve all or only one process

Software tools must not limit the user

• Modern software is built from
components

MPI designed to support libraries

Communication contexts in MPI are an
example

11/21/08

8

15

Composability

• Environments are built from components
Compilers, libraries, runtime systems

MPI designed to “play well with others”

• MPI exploits newest advancements in
compilers

… without ever talking to compiler writers

OpenMP is an example
• MPI (the standard) required no changes to work with

OpenMP

• MPI Thread modes provided for performance reasons

• MPI was designed from the beginning to work
within a larger collection of software tools

What’s needed to make MPI better? More good
tools!

16

Completeness

• MPI provides a complete parallel programming
model and avoids simplifications that limit the
model

Contrast: Models that require that synchronization
only occurs collectively for all processes or tasks

Contrast: Models that provide support for a
specialized (sub)set of distributed data structures

• Make sure that the functionality is there when

the user needs it
Don’t force the user to start over with a new
programming model when a new feature is needed

11/21/08

9

17

Conclusions:
Lessons From MPI

• A successful parallel programming model must enable more
than the simple problems

It is nice that those are easy, but those weren’t that hard to
begin with

• Scalability is essential

Why bother with limited parallelism?

Just wait a few months for the next generation of hardware

• Performance is equally important

But not at the cost of the other items

• It must also fit into the Software Ecosystem

MPI did not replace the languages

MPI did not dictate particular process or resource management

MPI defined a way to build tools by replacing MPI calls

(later) Other interfaces, such as debugging interface, also let
MPI interoperate with other tools

18

Issues that are not Issues

• Latency

Users often confuse Memory access times and CPU
times; expect to see remote memory access times
on the order of register access

Without overlapped access, a single memory
reference is 100’s to 1000’s of cycles

A load-store model for reasoning about program
performance isn’t enough

• Don’t forget memory consistency issues

• MPI “Buffers” as a scalability limit

This is an implementation issue that existing MPI
implementations for large scale systems already
address

• Buffers do not need to be preallocated

11/21/08

10

19

Fault Tolerance
 (As an MPI Problem)

• Fault Tolerance is a property of the
application; there is no magic solution

• MPI implementations can support fault
tolerance

• MPI intended implementations to continue

through faults when possible
That’s why there is a sophisticated error reporting
mechanism

What is needed is a higher standard of MPI
implementation, not a change to the MPI standard

• But - Some algorithms do need a more
convenient way to manage a collection of
processes that may change dynamically

20

Challenges

• Must avoid the traps:

The challenge is not to make easy programs
easier. The challenge is to make hard programs
possible.

We need a “well-posedness” concept for
programming tasks

• Small changes in the requirements should only require
small changes in the code

• Rarely a property of “high productivity” languages

Abstractions that make easy programs easier don’t solve
the problem

Latency hiding is not the same as low latency

• Need “Support for aggregate operations on large
collections”

11/21/08

11

21

Even Harder Challenges

• Make it hard to write incorrect
programs.

In general, current shared memory

programming models are very dangerous.

• They also perform action at a distance

• They require a kind of user-managed data
decomposition to preserve performance without
the cost of locks/memory atomic operations

Deterministic algorithms should have

provably deterministic implementations

• Some efforts for shared memory/multicore
programming are also addressing this issue

22

What’s the Real Issue
with MPI?

• MPI does not address the management of distributed data
structures

Not that it does badly; it is an orthogonal issue

• Languages that provide support for distributed data
structures have productivity advantages for those data
structures

What if you don’t have that sort of data structure?

• This does not mean that we can’t significantly improve on
MPI, but we must not reduce the space of algorithms and
programs by reducing the available data structures

Alternatives include building tools to support domain-specific
(distributed) data structures, exploiting advances in compiler

and source-to-source transformation infrastructure, extending

existing languages

Languages are also including more general support, but the
general distribution/decomposition problem is extremely difficult

11/21/08

12

23

How to Replace MPI

• Retain MPI’s strengths

Performance from matching programming model to the
realities of underlying hardware

Ability to compose with other software (libraries, compilers,
debuggers)

Determinism (without MPI_ANY_{TAG,SOURCE})

Run-everywhere portability

• Add to what MPI is missing, such as
Distributed data structures (not just a few popular ones)

Low overhead remote operations; better latency hiding/
management; overlap with computation

Dynamic load balancing for dynamic, distributed data
structures

Unified method for treating multicores, remote processors,
other resources

• Enable the transition from MPI programs

Build component-friendly solutions

24

Is MPI the Least Common
Denominator Approach?

• “Least common denominator”

Not the correct term

It is “Greatest Common Denominator”! (Ask any
Mathematician)

This is critical, because it changes the way you make
improvements

• If it is “Least” then improvements can be made by
picking a better approach. I.e., anything better than
“the least”.

• If it is “Greatest” then improvements require changing
the rules: either the available architectural support
(“Denominator”), the scope (“Common”), or the goals
(how “Greatest” is evaluated)

• Where can we change the rules for MPI?

11/21/08

13

25

Changing the Common

• Give up on ubiquity/portability and aim for a subset of
architectures

Vector computing was an example (and a cautionary tale)

Possible niches include
• SMT for latency hiding

• Reconfigurable computing; FPGA

• Stream processors

• GPUs

• Etc.

• Not necessarily a bad thing (if you are willing to accept
being on the fringe)

Risk: Keeping up with the commodity curve (remember
vectors)

Is GPGPU the fringe or the emerging commodity
processor?

• And GPGPUs might only change the node programming model

26

Changing the Denominator

• This means changing the features that are assumed present in

every system on which the programming model must run

• Some changes since MPI was designed:

RDMA Networks

• Best for bulk transfers

• Evolution of these may provide useful signaling for shorter transfers

Cache-coherent SMPs (more precisely, lack of many non-cache-

coherent SMP nodes)

Exponentially increasing gap between memory and CPU performance

Better support for source-to-source transformation

• Enables practical language solutions

• If DARPA HPCS is successful at changing the “base” HPC systems,
we may also see

Remote load/store, remote simple ops

Hardware support for hiding memory latency

11/21/08

14

27

Changing the Goals

• Change the space of features

That is, change the problem definition so that there
is room to expand (or contract) the meaning of
“greatest”

• Some possibilities
Integrated support for concurrent activities

• Not threads:

“Night of the Living Threads”,
http://weblogs.mozillazine.org/roc/archives/2005/12/
night_of_the_living_threads.html, 2005

“Why Threads Are A Bad Idea (for most purposes)” John
Ousterhout (~2004)

Support for (specialized or general) distributed data
structures

28

Issues for MPI in the
Trans-Petascale Era

• Complement MPI with support for
Distributed (possibly dynamic) data structures

Improved node performance (including multicore)
• May include tighter integration, such as MPI+OpenMP with

compiler and runtime awareness of both
• Must be coupled with latency tolerant and memory hierarchy

sensitive algorithms

Fault detection and tolerance
Load balancing

• Address the real memory wall - latency
Likely to need hardware support + programming models to
handle memory consistency model

• MPI RMA model needs updating
To match locally cache-coherent hardware designs
Add better atomic remote op support

• Parallel I/O model needs more support
For optimal productivity of the computational scientist,
data files should be processor-count independent
(canonical form)

11/21/08

15

29

Abstraction in Programming

• Must get away from requiring the
management of each detail

• More software will / should be built based
on capabilities

Virtualization – abstracts processor resources
• Provides a powerful tool for load balancing, fault

handling

Routines organized by function rather than
data structure and/or algorithm provide
greater flexibility
• A different solution to the “multicore”/parallel

programming problem

• An example is another project I’ve had the pleasure
to start …

30

What is PETSc?

• PETSc is a numerical library

Organized around mathematical concepts needed to
solve PDEs

• PETSc began as a tool to aid in research into
domain decomposition methods for PDEs.

A new library was needed because

• Numerical libraries organized around particular algorithms,
rather than mathematical problems, making
experimentation with different algorithms difficult

• Most libraries were not re-entrant, making recursive use
impossible

• PETSc is now used by both applications scientists

and researchers (100’s of users including DOE
and NSF leadership computing platforms)

11/21/08

16

31

What Advantage Does This
Approach Give You?

• Example: A Poisson Solver in PETSc
The following slides show the core of a
complete 2-d Poisson solver in PETSc.
Features of this solver:
• Fully parallel

• 2-d decomposition of the 2-d mesh

• Linear system described as a sparse matrix; user
can select many different sparse data structures

• Linear system solved with any user-selected
Krylov iterative method and preconditioner
provided by PETSc, including GMRES with ILU,
BiCGstab with Additive Schwarz, etc.

• Complete performance analysis built-in

The full example is only 7 slides of code!

32

#include <math.h>

#include "petscsles.h"

#include "petscda.h"

int main(int argc, char *argv[])

{

 SLES sles; Mat A; Vec b, x; DA grid;

 int its, n, px, py, worldSize;

 PetscInitialize(&argc, &argv, 0, 0);

…

 DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR,

 n, n, px, py, 1, 1, 0, 0, &grid);

 A = FormLaplacianDA2d(grid, n);

 b = FormVecFromFunctionDA2d(grid, n, func);

 VecDuplicate(b, &x);

 SLESCreate(PETSC_COMM_WORLD, &sles);

 SLESSetOperators(sles, A, A, DIFFERENT_NONZERO_PATTERN);

 SLESSetFromOptions(sles);

 SLESSolve(sles, b, x, &its);

 PetscPrintf(PETSC_COMM_WORLD, "Solution is:\n");

 VecView(x, PETSC_VIEWER_STDOUT_WORLD);

 PetscPrintf(PETSC_COMM_WORLD, "Required %d iterations\n", its);

 …

 PetscFinalize();

 }

Solve a Poisson Problem with
Preconditioned GMRES

PETSc provides
coordinated I/O
(behavior is as-if a
single process),
including the output
of the distributed
“vec” object

PETSc provides
routines that solve
systems of sparse
linear (and
nonlinear) equations

Define a distributed
data structure

11/21/08

17

33

Why Was PETSc a Success?

• The success of PETSc is due to:
Performance and Scalability

• Performance is only weakly correlated with FLOPS

Consistent interface based on the mathematical
problems
Completeness

• Can overcome “ease of use”

Attention to portability and configuration issues
• Often the critical factor

• Portability requires care but isn’t hard.

• A key advantage to the PETSc approach
Algorithm Independence

• Until we know the best way, don’t make the choice

• Users can try new algorithms without giving up the
ones with which they are comfortable

• Note that PETSc succeeded for many of the
same reasons as MPI!

34

Addressing Single Node
Performance

• Single node and single
thread performance remains
a major challenge

• The “low fraction of peak
performance of parallel
computers is really just the
poor single core performance

• We need to extend
“compilation” to involve 3rd-
party, specialized software

Autotuners

Domain-specific languages

Composable Language
extensions through

annotations

• Common theme:
Build interoperable
components

• Which brings us to

hybrid programming
models

7X

11/21/08

18

35

Myths About the Hybrid
Model

1. Never works
Examples from FEM assembly, others show benefit

2. Always works
Examples from NAS, EarthSim, others show MPI
everywhere often as fast as hybrid models

3. Requires special MPI
In many cases does not; in others, requires a level
defined in MPI-2

4. Harder to program
Harder than what?

Really the classic solution to complexity - divide problem
into separate problems

• 10000-fold coarse-grain parallelism + 100-fold fine-grain
parallelism gives 1,000,000-fold total parallelism

36

Where Do OpenMP + MPI
Work Well?

• Compute-Bound Loops
This can happen in some kinds of matrix assembly, for
example.

• Fine-grain parallelism
E.g., in blocked preconditioners, where fewer, larger
blocks, each managed with OpenMP, as opposed to more,
smaller, single-threaded blocks in the all-MPI version,
gives you an algorithmic advantage (e.g., fewer
iterations).

• Load Balancing
Where the computational load isn't exactly the same in all
threads/processes; this can be viewed as a variation on
fine-grained access.

• Memory bound loops
Where read data is shared, so that cache memory can be
used more efficiently.

11/21/08

19

37

New Programming Models

• We can look at more than just MPI + OpenMP

• PGAS languages offer another tool for building parallel
components

• UPC/CAF/MPI interoperability

Provides a way to incrementally exploit new
programming models

Using “local” data items

• Why PGAS?

Load-store model may permit more efficient
communication of small data items

Using many smaller tasks can improve scalability

• Adaptive load balancing (move tasks around as necessary)

May be able to overlap communication and computation
more effectively

38

More General MPI Hybrid
Programming Models

• Why consider the Hybrid Model with PGAS or
other programming models?

Load balancing

Shared data (reduce memory pressure, particularly
for processor-rich (and hence memory poor) nodes)

Component software (use the best programming
model to implement a component)

OpenMP and MPI understood

What about others: MPI/UPC (or PGAS)
interoperability

• Possible combinations for MPI and UPC (or
other PGAS) languages include:

MPI processes are UPC programs

MPI processes are UPC threads

UPC Programs are combined into MPI programs

11/21/08

20

39

MPI Processes are UPC
Threads

• The program starts as a single
UPC program. Each UPC thread
calls MPI_Init (or
MPI_Init_thread). The process
management system must
permit UPC programs to use
MPI_Init to also become MPI
programs.

• The program starts as a single
MPI program (started with
mpiexec). UPC is initialized
somehow

UPC initialized explicitly with a
routine call

UPC initialized implicitly
because UPC compiler knew this
was an MPI + UPC program

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

40

MPI Processes are
UPC Programs

• MPI Processes are
UPC programs (not
threads), spanning
multiple nodes. This
model is the closest
counterpart to the
MPI+OpenMP model,
using PGAS to
extend the "process"
beyond a single
node. (An MPI
process need not be
an OS process).

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

MPI Process/
UPC Program

11/21/08

21

41

Component-Oriented
Software Solutions

• Hybrid programming models exploit complementary
strengths

• Evolutionary Path to Hybrid Models

Short term - better support for resource sharing
• We need to experiment with specifying additional information,

e.g., through mpiexec

Medium term - better support for interoperating
components

• We need to ensure that communication infrastructures can
cooperate

• Consider extensions to make implementations aware that they
are in a hybrid model program

Long term - Generalized model, efficient sharing of
communication and computation infrastructure

• Other approaches also build on software
components

42

We are in this Together

• Support community activities

MPI Forum

Software consortiums, BOFs, …

Come to SC09 in Portland!

• Build collaborations

At Illinois, we have many parallel computing activities

• NSCA (Blue Waters), UPCRC (Multicore Programming), Cloud

Computing, IACAT, Research in CS and ECE departments, …

Parallel@Illinois (www.parallel.illinois.edu Booth 2040)

• Serves as an umbrella for Illinois efforts

• Many other efforts around the world
• Great Lakes Consortium for Petascale Computation

• By developing approaches and tools that can
interoperate, we can address the daunting problem of
programming trans-petaflop and exeflop systems

11/21/08

22

43

Conclusions

• We have strategies that have and will
serve us well

Proper use of abstraction

Better use of components
• Specialized compilation and tuning tools

• Domain-specific languages

• New(er) languages that can interoperate with
existing codes

• Community efforts are critical
MPI Forum (meetings.mpi-forum.org)

Open Software Consortiums (stay tuned)

44

Thanks!

• Thanks to you for your attention

• Thanks to my many co-workers
and collaborators

• Thanks to the Department of
Energy, the National Science
Foundation, and the HDF Group for

their support

