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Summary 

• Algorithms and Data Structures need to take memory 

prefetch hardware into account 

• This talk shows one example - Matrix-vector multiply 

• As we’ll show, the results can be dramatic 

• Prefetch is designed to improve realized memory 

bandwidth.  How important is that? 
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BG/L Node 

700 MHz 

• Consider the simple 

case of memory 

copy: 

• Do i=1,n 

    a(i) = b(i) 

• Suppose system 

memory 

bandwidth is 

5.5GB/s.  How 

fast will this loop 

execute? 
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Stream Performance Estimate 

• Easy estimate: 11 GB/s = 2 * 5.5 GB/Sec to L3, 5.5 GB/
Sec to main memory 
• Minimum link speed is 5.5 GB/s each way, Stream adds both 

• Measured performance is 1.2 GB/s! 
• Why? 

• Time to move each cache line 
• 5.5 GB/s ~ 8 bytes/cycle (memory bus bandwidth) 

• ~60 cycles L2 miss (latency) 

• 64 byte cache line = 8 cycles (bandwidth) + 60 cycles (latency) = 
68 cycles or ~ 0.94 byte/cycle (read) 

• Stream bytes read + bytes written / time, so stream estimate is 2 
* 0.94 byte/cycle, or 1.3 GB/sec 

• This is typical (if anything, better than many systems 
because L2 miss cost is low) 

• (there’s more to this analysis, of course) 
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Example: Sparse Matrix-Vector Product 

• Common operation for optimal (in floating-point operations) 

solution of linear systems 

• Sample code (in C): 

for row=1,n 

    m   = i[row] - i[row-1]; 

    sum = 0; 

    for k=1,m 
        sum += *a++ * x[*j++]; 

    y[i] = sum; 

• Data structures are a[nnz], j[nnz], i[n], x[n], y[n] 
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Simple Performance Analysis 

• Memory motion: 

• nnz (sizeof(double) + sizeof(int)) +  

n (2*sizeof(double) + sizeof(int))  

• Assume a perfect cache (never load same data twice; 

only compulsory loads) 

• Computation 

• nnz multiply-add (MA) 

• Roughly 12 bytes per MA 

• Typical WS node can move 1-4 bytes/MA 

• Maximum performance is 8-33% of peak 
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Realistic Measures of  Peak Performance 
Sparse Matrix Vector Product 
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120 

Thanks to Dinesh Kaushik;  
ORNL and ANL for compute time 8 

Comments 

• Simple model based on memory performance gives good 

bounds on performance 

• Detailed prediction requires much more work; often not 

necessary or relevant to the algorithm designer 

• Note that a key feature of the model is the use of 

measured sustained memory bandwidth 

• In many cases, achieved performance is close to that 

limit; advanced techniques, such as auto-tuners, cannot 

significantly boost performance 

• But the measured memory bandwidth is low relative to the 

raw hardware bandwidth… 



9 

Prefetch Engine on IBM Power Microprocessors 

• Beginning with the Power 3 chip, IBM 

provided a hardware component called 

a prefetch engine to monitor cache 

misses,  guess the data pattern (“data 

stream”) and prefetch data in 

anticipation of their use.  

• Power 4, 5 and 6 microchips enhanced 

this functionality. 

The Prefetch Engine on Power3 chip  

 

Data Stream and Cache Information 
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 Inefficiency of CSR and BCSR formats 

• The traditional CSR and Blocked CSR are hard to 

reorganize for data streams (esp > 2 streams) to enable 

prefetch, since the number of non-zero elements or blocks 
for every row may be different.  

• Blocked CSR (BCSR) format can improve performance for 

some sparse matrices that are locally dense, even if a few 

zeros are added to the matrix.  

• If the matrix is too sparse (or structure requires too 

many added zeros), BCSR can hurt performance 
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Streamed Compressed Sparse Row (S-CSR) format 

• S-CSR format partitions the sparse matrix into blocks along rows with size of bs. Zeros 

are added in to keep the number of elements the same in each row of a block. The 

column indices for ZEROs in each row are set to the index of the last non-zero element 

in the row. The first rows of all blocks are stored first, then second, third … and bs-th 

rows.  

• For the sample matrix in the following Figure, NNZ =  29. Using a block size of bs = 4, it 

generates four equal length streams R, G, B and P.  This new design only adds 7 zeros 

every 4 rows. 
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Streamed Blocked Compressed Sparse Row (S-BCSR) format 

• When the matrix is locally dense and can be blocked efficiently with a few ZEROs added 

in, we can restore the blocked matrix using the similar idea as S-CSR format. The first 

rows of all blocks are stored first, then second, third … and last rows. Using 4x4 block for 

example, it will generate R, G, B and P four equal length streams. We call this the 

Streamed Blocked Compressed Row storage format (S-BCSR).  
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Codes for CSR and S-CSR-2 formats 
CSR S-CSR-2 

void CSR(double *v, double *x, 

double *z, int *ii, int *idx, int NROW) 

{ 

   int   i, j,n, *idxp; 

   double sum1, *v1, xb; 

#pragma omp parallel for \ 

   private(i,j,n, sum1,v1,idxp,xb) \ 

   schedule(static) 

   for (i=0; i<NROW; i++) { 

     sum1 = 0.0; 

     n = ii[i] - ii[0]; v1 = v+n;  

     idxp = idx+n; 

     for (j=ii[i]; j<ii[i+1]; j++) { 

        xb = *(x + (*idxp++)); 

        sum1 += (*v1++)*xb; 

     } 

     z[i] = sum1; 

   } 

} 

void S_CSR_2(double *v, double *x, double *z, int *ii,

int *idx, int NROW) 

{ 

  int rbs = 2; 

  int MROW =NROW/rbs, rrows = NROW%rbs, rslast 

= rbs; 

  if(rrows > 0) {MROW++;  rslast = rrows;} 

  double *v1, *v2; 

  int    *ix1, *ix2; 

   int   i, j, k, nl, nm, ilen; 

   double sum1, sum2; 

   ilen  = ii[MROW]  - ii[0]; 

   ix1 = idx;       v1 = v; 

   ix2 = ix1+ilen;  v2 = v1+ilen; 

   int MNR = MROW-1; 

   if(rrows == 0 ) MNR = MROW; 

   double *v10,  *v20; 

   int    *iix1, *iix2; 

#pragma omp parallel for \ 

   private(i,j,nm, sum1,sum2,v10,v20,iix1,iix2) \ 

   schedule(static) 

   for (i=0; i<MNR; i++) { 

     sum1 = sum2 =  0.0; 

     nm = ii[i] - ii[0]; 

    // two streams 

     v10 = v1  + nm;   v20 = v2  + nm; 

     iix1= ix1 + nm;   iix2 = ix2 + nm; 

     for (j=ii[i]; j<ii[i+1]; j++){ 

        sum1 += *(v10++)*x[*iix1++]; 

        sum2 += *(v20++)*x[*iix2++]; 

     }//j 

     z[rbs*i  ] = sum1;     z[rbs*i+1] = sum2; 

   }//i 

   i = MNR; 

   if (rrows == 1 ) { 

      sum1 = 0.0; 

      nm = ii[i] - ii[0]; 

      v10 = v1  + nm; 

      iix1= ix1 + nm; 

      for (j=ii[i]; j<ii[i+1]; j++)  

              sum1 += *(v10++) * x[*iix1++]; 

      z[rbs*i  ] = sum1; 

   } 

} 
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Codes for BCSR-4 and S-BCSR-4 formats 
BCSR-4 S-BCSR-4 

void BCSR_4(double *v, double *x, double *z, int *ii, int *idx, int MROW) 

{   

   int   i, j, n, *idxp; 
   double x1,x2,x3,x4,x5, sum1,sum2,sum3,sum4,sum5; 

   double *xb, *v0; 

#pragma omp parallel for \ 

   private(i, j, n, sum1, sum2, sum3, sum4, v0, xb, idxp)  \ 
   schedule(static) 

   for (i=0; i<MROW; i++) { 

     n  = ii[i] - ii[0]; 

     v0 = v+16*n;  

     idxp = idx+n; 
     sum1 = sum2 = sum3 = sum4 = 0.0; 

     for (j=ii[i]; j<ii[i+1]; j++) { 

       xb = x + 4*(*idxp++); 

       x1 = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3]; 

       sum1 += v0[ 0] *x1  + v0[ 1] *x2 + v0[ 2] *x3  + v0[ 3] *x4; 
       sum2 += v0[ 4] *x1  + v0[ 5] *x2 + v0[ 6] *x3  + v0[ 7] *x4; 

       sum3 += v0[ 8] *x1  + v0[ 9] *x2 + v0[10]*x3  + v0[11]*x4; 

       sum4 += v0[12]*x1 + v0[13]*x2  +v0[14]*x3   + v0[15]*x4; 

       v0 += 16; 

     } 
     z[4*i  ] = sum1;        z[4*i+1] = sum2; 

     z[4*i+2] = sum3;      z[4*i+3] = sum4; 

   } 

} 

void S_BCSR_4(double *v, double *x, double *z, int *ii, int *idx, int MROW) 

{ 

   int    i, j, n, len, *idxp; 
   double x1,x2,x3,x4,x5, sum1,sum2,sum3,sum4; 

   double *xb, *v0, *v1, *v2, *v3, *v4, *v10, *v20, *v30, *v40; 

   len = (ii[MROW] - ii[0])*4; 

   v1 = v;   v2 = v+len;  v3 = v+len*2;    v4 = v+len*3; 

#pragma omp parallel for \ 

   private(i,j,n,sum1,sum2,sum3,sum4,v10,v20,v30,v40,xb,idxp) \ 

   schedule(static) 

   for (i=0; i<MROW; i++) { 
     n  = ii[i] - ii[0]; 

     v10 = v1+4*n;     v20 = v2+4*n; 

     v30 = v3+4*n;     v40 = v4+4*n; 

     idxp = idx+n; 

     sum1 = sum2 = sum3 = sum4 = 0.0; 

     for (j=ii[i]; j<ii[i+1]; j++) { 

       xb = x + 4*(*idxp++); 

       x1 = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3]; 

       sum1 += v10[0]*x1 + v10[1]*x2 + v10[2]*x3  + v10[3]*x4; 
       sum2 += v20[0]*x1 + v20[1]*x2 + v20[2]*x3  + v20[3]*x4; 

       sum3 += v30[0]*x1 + v30[1]*x2 + v30[2]*x3  + v30[3]*x4; 

       sum4 += v40[0]*x1 + v40[1]*x2 + v40[2]*x3  + v40[3]*x4; 

       v10 += 4; v20 += 4; v30 += 4; v40 += 4; 

     } 
     z[4*i  ] = sum1;       z[4*i+1] = sum2; 

     z[4*i+2] = sum3;     z[4*i+3] = sum4; 

   } 

} 
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Some Sparse Matrices used in the tests 

• We used matrices from the University of Florida collection 

• All the codes were compiled 

with “xlc_r –O3 –qstrict –q64 
-qtune=auto -qarch=auto”.  

64KB page size was set for 
text and data on Power5 and 

Power6 chips.  

• Performance measured is 

that average of three runs 
after a “cold start” run 
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Performance Ratio compared to CSR format  
• S-CSR format is better than CSR format for all (on Power 5 and 6) or Most ( on Power 4) matrices 

• S-BCSR format is better than BCSR format for all (on Power 6) or Most ( on Power 4 and 5) matrices 

• Blocked format performance from  to 3x CSR. 

Performance Ratio Compared to CSR format 
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S-CSR formats with two and four streams 
• S-BCSR-4 is generally better than S-BCSR-2 on Power 6.  

• On Power 4 and 5, these two are mixed. 

• S-CSR-4 format can achieve over 2x performance improvement of CSR. 

Performance Ratio Compared to CSR format 
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MPI with 4 nodes 

• Parallel tests with MPI using 4 nodes on P5 and P6. At most 50% 

improvement achieved.  

• Probably due to communication overhead (these are small matrices) 
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SMP with 4 threads 

• SMP with 4 threads also tested on P5 and P6. Typical performance boost of 

1.5-2x over CSR 

• Shows prefetch works with multiple threads (more tests needed) 
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Comparison of S-BCSR-4 format to BCSR-4 format 

• The matrices are chosen with large data size (> 32 MB) and the performance 

of BCSR format is close to or better than CSR format. 

• Performance Improvement of S-BCSR-4 format compared to BCSR-4 format:  

      P4: 20 -60%, P5: 30 -45%, P6: 75 -108% 
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Streamed format on Intel processors 

• The tests were also run on abe.ncsa.uiuc.edu (Xeon/Clovertown, 2.33 GHz, 2x4 MB L2 

cache) 

• S-CSR-2 and/or S-CSR-4 format can result in better performance than CSR format for 

many matrices. 

• S-BCSR-4 format is better than BCSR-4 format for all the matrices except for 

“bcsstm27”, which is small and fits in cache. For most matrices, S-BCSR format provides 

a 10 - 20% of performance improvement. 
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Summary and Future Work 

• The streamed CSR and BCSR storage formats can significantly 

improve the performance of SpMV for a variety of matrices on IBM 

processors. Over 100% performance improvement can be achieved. 

• Simulation results for POWER7 also are good  

• The new formats also show the benefits on Intel processors. 

• We will compare the new format with other auto-tuning packages, such 
as Berkeley-OSKI, and with other approaches to improve performance 

within rows (such as sorted CSR) 

• New formats will be provided within PETSc 

• Initial results: S-CSR provides more performance than OSKI 

• Alignment and SIMD instructions will also be considered in the new 

formats. 

• Perhaps most important – extension to other matrix-vector operations 

used in preconditioners 
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Yet Another Complication 

• How many loads and stores from memory are required by 
 a = b 

• Natural answer is  
• One load (b), one store (a) 

• For cache-based systems, the answer is 
• Two loads: cacheline containing b and cacheline containing a 

• One store: cacheline containing a 

• Recall the 2 read for  one write path to L1 cache 

• For main memory, max rate is then 2/3 * 5.5GB/sec, or 3.7 
GB/s 
• Still almost double the best, hand-tuned stream kernel 
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Peak and Observed Memory Performance 

This diagram 

leaves off the 

most important 

information - 

latency between 

components 

Stated values 

are never 

observed by the 

programmer 
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Sparse Matrix and Vector Multiply (SpMV)  

• SpMV is a key operation 

• in iterative methods 

• in explicit methods, where the operator can be written 

as a matrix-vector product. 

• Much effort has been focused on developing effective data 

structures for this problem including the recent application 

of auto-tuning approaches to optimize aspects of the data 

structure.   

• As we’ve seen, a major impediment to improving  

performance of this operation is that it is memory-

bandwidth intensive.  
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Dense Matrix Vector Multiply  

• NxN Dense Matrix-Vector multiply is also tested. N is up to 10,000.  

• Two block sizes 4x4 and 5x5  are employed. 

• The tests clearly show better performance with S-BCSR format. 

27 

Dense Matrix Vector Multiply (cont’d) 

• When N is larger and the data 

is out of L3 cache, S-BCSR 

format is steadily better than 
the original BCSR format. 

Block 

Size 

Power 4 Power 5 Power 6 

4x4 25 – 35 45 -- 50  70 -- 90 

5x5 20 -- 60 100 – 150 60 -- 90 

Performance Improvement from S-BCSR format 

(exclude the singularity) 
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Streamed formats on Intel processors (cont’d) 

• The results of Dense Matrix-Vector Multiply show that 

streamed BCSR format can improve 10-25% compared to 

the traditional BCSR format.  


