
Optimizing Sparse Data Structures

for Matrix-Vector Multiply

William Gropp (UIUC) and Dahai Guo (NCSA)

2

Summary

• Algorithms and Data Structures need to take memory

prefetch hardware into account

• This talk shows one example - Matrix-vector multiply

• As we’ll show, the results can be dramatic

• Prefetch is designed to improve realized memory

bandwidth. How important is that?

3

3

BG/L Node

700 MHz

• Consider the simple

case of memory

copy:

• Do i=1,n

 a(i) = b(i)

• Suppose system

memory

bandwidth is

5.5GB/s. How

fast will this loop

execute?

4

Stream Performance Estimate

• Easy estimate: 11 GB/s = 2 * 5.5 GB/Sec to L3, 5.5 GB/
Sec to main memory
• Minimum link speed is 5.5 GB/s each way, Stream adds both

• Measured performance is 1.2 GB/s!
• Why?

• Time to move each cache line
• 5.5 GB/s ~ 8 bytes/cycle (memory bus bandwidth)

• ~60 cycles L2 miss (latency)

• 64 byte cache line = 8 cycles (bandwidth) + 60 cycles (latency) =
68 cycles or ~ 0.94 byte/cycle (read)

• Stream bytes read + bytes written / time, so stream estimate is 2
* 0.94 byte/cycle, or 1.3 GB/sec

• This is typical (if anything, better than many systems
because L2 miss cost is low)

• (there’s more to this analysis, of course)

5

Example: Sparse Matrix-Vector Product

• Common operation for optimal (in floating-point operations)

solution of linear systems

• Sample code (in C):

for row=1,n

 m = i[row] - i[row-1];

 sum = 0;

 for k=1,m
 sum += *a++ * x[*j++];

 y[i] = sum;

• Data structures are a[nnz], j[nnz], i[n], x[n], y[n]

6

Simple Performance Analysis

• Memory motion:

• nnz (sizeof(double) + sizeof(int)) +

n (2*sizeof(double) + sizeof(int))

• Assume a perfect cache (never load same data twice;

only compulsory loads)

• Computation

• nnz multiply-add (MA)

• Roughly 12 bytes per MA

• Typical WS node can move 1-4 bytes/MA

• Maximum performance is 8-33% of peak

7

Realistic Measures of Peak Performance
Sparse Matrix Vector Product
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

Thanks to Dinesh Kaushik;
ORNL and ANL for compute time 8

Comments

• Simple model based on memory performance gives good

bounds on performance

• Detailed prediction requires much more work; often not

necessary or relevant to the algorithm designer

• Note that a key feature of the model is the use of

measured sustained memory bandwidth

• In many cases, achieved performance is close to that

limit; advanced techniques, such as auto-tuners, cannot

significantly boost performance

• But the measured memory bandwidth is low relative to the

raw hardware bandwidth…

9

Prefetch Engine on IBM Power Microprocessors

• Beginning with the Power 3 chip, IBM

provided a hardware component called

a prefetch engine to monitor cache

misses, guess the data pattern (“data

stream”) and prefetch data in

anticipation of their use.

• Power 4, 5 and 6 microchips enhanced

this functionality.

The Prefetch Engine on Power3 chip

Data Stream and Cache Information

10

 Inefficiency of CSR and BCSR formats

• The traditional CSR and Blocked CSR are hard to

reorganize for data streams (esp > 2 streams) to enable

prefetch, since the number of non-zero elements or blocks
for every row may be different.

• Blocked CSR (BCSR) format can improve performance for

some sparse matrices that are locally dense, even if a few

zeros are added to the matrix.

• If the matrix is too sparse (or structure requires too

many added zeros), BCSR can hurt performance

11

Streamed Compressed Sparse Row (S-CSR) format

• S-CSR format partitions the sparse matrix into blocks along rows with size of bs. Zeros

are added in to keep the number of elements the same in each row of a block. The

column indices for ZEROs in each row are set to the index of the last non-zero element

in the row. The first rows of all blocks are stored first, then second, third … and bs-th

rows.

• For the sample matrix in the following Figure, NNZ = 29. Using a block size of bs = 4, it

generates four equal length streams R, G, B and P. This new design only adds 7 zeros

every 4 rows.

12

Streamed Blocked Compressed Sparse Row (S-BCSR) format

• When the matrix is locally dense and can be blocked efficiently with a few ZEROs added

in, we can restore the blocked matrix using the similar idea as S-CSR format. The first

rows of all blocks are stored first, then second, third … and last rows. Using 4x4 block for

example, it will generate R, G, B and P four equal length streams. We call this the

Streamed Blocked Compressed Row storage format (S-BCSR).

13

Codes for CSR and S-CSR-2 formats
CSR S-CSR-2

void CSR(double *v, double *x,

double *z, int *ii, int *idx, int NROW)

{

 int i, j,n, *idxp;

 double sum1, *v1, xb;

#pragma omp parallel for \

 private(i,j,n, sum1,v1,idxp,xb) \

 schedule(static)

 for (i=0; i<NROW; i++) {

 sum1 = 0.0;

 n = ii[i] - ii[0]; v1 = v+n;

 idxp = idx+n;

 for (j=ii[i]; j<ii[i+1]; j++) {

 xb = *(x + (*idxp++));

 sum1 += (*v1++)*xb;

 }

 z[i] = sum1;

 }

}

void S_CSR_2(double *v, double *x, double *z, int *ii,

int *idx, int NROW)

{

 int rbs = 2;

 int MROW =NROW/rbs, rrows = NROW%rbs, rslast

= rbs;

 if(rrows > 0) {MROW++; rslast = rrows;}

 double *v1, *v2;

 int *ix1, *ix2;

 int i, j, k, nl, nm, ilen;

 double sum1, sum2;

 ilen = ii[MROW] - ii[0];

 ix1 = idx; v1 = v;

 ix2 = ix1+ilen; v2 = v1+ilen;

 int MNR = MROW-1;

 if(rrows == 0) MNR = MROW;

 double *v10, *v20;

 int *iix1, *iix2;

#pragma omp parallel for \

 private(i,j,nm, sum1,sum2,v10,v20,iix1,iix2) \

 schedule(static)

 for (i=0; i<MNR; i++) {

 sum1 = sum2 = 0.0;

 nm = ii[i] - ii[0];

 // two streams

 v10 = v1 + nm; v20 = v2 + nm;

 iix1= ix1 + nm; iix2 = ix2 + nm;

 for (j=ii[i]; j<ii[i+1]; j++){

 sum1 += *(v10++)*x[*iix1++];

 sum2 += *(v20++)*x[*iix2++];

 }//j

 z[rbs*i] = sum1; z[rbs*i+1] = sum2;

 }//i

 i = MNR;

 if (rrows == 1) {

 sum1 = 0.0;

 nm = ii[i] - ii[0];

 v10 = v1 + nm;

 iix1= ix1 + nm;

 for (j=ii[i]; j<ii[i+1]; j++)

 sum1 += *(v10++) * x[*iix1++];

 z[rbs*i] = sum1;

 }

}

14

Codes for BCSR-4 and S-BCSR-4 formats
BCSR-4 S-BCSR-4

void BCSR_4(double *v, double *x, double *z, int *ii, int *idx, int MROW)

{

 int i, j, n, *idxp;
 double x1,x2,x3,x4,x5, sum1,sum2,sum3,sum4,sum5;

 double *xb, *v0;

#pragma omp parallel for \

 private(i, j, n, sum1, sum2, sum3, sum4, v0, xb, idxp) \
 schedule(static)

 for (i=0; i<MROW; i++) {

 n = ii[i] - ii[0];

 v0 = v+16*n;

 idxp = idx+n;
 sum1 = sum2 = sum3 = sum4 = 0.0;

 for (j=ii[i]; j<ii[i+1]; j++) {

 xb = x + 4*(*idxp++);

 x1 = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3];

 sum1 += v0[0] *x1 + v0[1] *x2 + v0[2] *x3 + v0[3] *x4;
 sum2 += v0[4] *x1 + v0[5] *x2 + v0[6] *x3 + v0[7] *x4;

 sum3 += v0[8] *x1 + v0[9] *x2 + v0[10]*x3 + v0[11]*x4;

 sum4 += v0[12]*x1 + v0[13]*x2 +v0[14]*x3 + v0[15]*x4;

 v0 += 16;

 }
 z[4*i] = sum1; z[4*i+1] = sum2;

 z[4*i+2] = sum3; z[4*i+3] = sum4;

 }

}

void S_BCSR_4(double *v, double *x, double *z, int *ii, int *idx, int MROW)

{

 int i, j, n, len, *idxp;
 double x1,x2,x3,x4,x5, sum1,sum2,sum3,sum4;

 double *xb, *v0, *v1, *v2, *v3, *v4, *v10, *v20, *v30, *v40;

 len = (ii[MROW] - ii[0])*4;

 v1 = v; v2 = v+len; v3 = v+len*2; v4 = v+len*3;

#pragma omp parallel for \

 private(i,j,n,sum1,sum2,sum3,sum4,v10,v20,v30,v40,xb,idxp) \

 schedule(static)

 for (i=0; i<MROW; i++) {
 n = ii[i] - ii[0];

 v10 = v1+4*n; v20 = v2+4*n;

 v30 = v3+4*n; v40 = v4+4*n;

 idxp = idx+n;

 sum1 = sum2 = sum3 = sum4 = 0.0;

 for (j=ii[i]; j<ii[i+1]; j++) {

 xb = x + 4*(*idxp++);

 x1 = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3];

 sum1 += v10[0]*x1 + v10[1]*x2 + v10[2]*x3 + v10[3]*x4;
 sum2 += v20[0]*x1 + v20[1]*x2 + v20[2]*x3 + v20[3]*x4;

 sum3 += v30[0]*x1 + v30[1]*x2 + v30[2]*x3 + v30[3]*x4;

 sum4 += v40[0]*x1 + v40[1]*x2 + v40[2]*x3 + v40[3]*x4;

 v10 += 4; v20 += 4; v30 += 4; v40 += 4;

 }
 z[4*i] = sum1; z[4*i+1] = sum2;

 z[4*i+2] = sum3; z[4*i+3] = sum4;

 }

}

15

Some Sparse Matrices used in the tests

• We used matrices from the University of Florida collection

• All the codes were compiled

with “xlc_r –O3 –qstrict –q64
-qtune=auto -qarch=auto”.

64KB page size was set for
text and data on Power5 and

Power6 chips.

• Performance measured is

that average of three runs
after a “cold start” run

16

Performance Ratio compared to CSR format
• S-CSR format is better than CSR format for all (on Power 5 and 6) or Most (on Power 4) matrices

• S-BCSR format is better than BCSR format for all (on Power 6) or Most (on Power 4 and 5) matrices

• Blocked format performance from to 3x CSR.

Performance Ratio Compared to CSR format

17

S-CSR formats with two and four streams
• S-BCSR-4 is generally better than S-BCSR-2 on Power 6.

• On Power 4 and 5, these two are mixed.

• S-CSR-4 format can achieve over 2x performance improvement of CSR.

Performance Ratio Compared to CSR format

18

MPI with 4 nodes

• Parallel tests with MPI using 4 nodes on P5 and P6. At most 50%

improvement achieved.

• Probably due to communication overhead (these are small matrices)

19

SMP with 4 threads

• SMP with 4 threads also tested on P5 and P6. Typical performance boost of

1.5-2x over CSR

• Shows prefetch works with multiple threads (more tests needed)

20

Comparison of S-BCSR-4 format to BCSR-4 format

• The matrices are chosen with large data size (> 32 MB) and the performance

of BCSR format is close to or better than CSR format.

• Performance Improvement of S-BCSR-4 format compared to BCSR-4 format:

 P4: 20 -60%, P5: 30 -45%, P6: 75 -108%

21

Streamed format on Intel processors

• The tests were also run on abe.ncsa.uiuc.edu (Xeon/Clovertown, 2.33 GHz, 2x4 MB L2

cache)

• S-CSR-2 and/or S-CSR-4 format can result in better performance than CSR format for

many matrices.

• S-BCSR-4 format is better than BCSR-4 format for all the matrices except for

“bcsstm27”, which is small and fits in cache. For most matrices, S-BCSR format provides

a 10 - 20% of performance improvement.

22

Summary and Future Work

• The streamed CSR and BCSR storage formats can significantly

improve the performance of SpMV for a variety of matrices on IBM

processors. Over 100% performance improvement can be achieved.

• Simulation results for POWER7 also are good

• The new formats also show the benefits on Intel processors.

• We will compare the new format with other auto-tuning packages, such
as Berkeley-OSKI, and with other approaches to improve performance

within rows (such as sorted CSR)

• New formats will be provided within PETSc

• Initial results: S-CSR provides more performance than OSKI

• Alignment and SIMD instructions will also be considered in the new

formats.

• Perhaps most important – extension to other matrix-vector operations

used in preconditioners

23

Yet Another Complication

• How many loads and stores from memory are required by
 a = b

• Natural answer is
• One load (b), one store (a)

• For cache-based systems, the answer is
• Two loads: cacheline containing b and cacheline containing a

• One store: cacheline containing a

• Recall the 2 read for one write path to L1 cache

• For main memory, max rate is then 2/3 * 5.5GB/sec, or 3.7
GB/s
• Still almost double the best, hand-tuned stream kernel

24

Peak and Observed Memory Performance

This diagram

leaves off the

most important

information -

latency between

components

Stated values

are never

observed by the

programmer

25

Sparse Matrix and Vector Multiply (SpMV)

• SpMV is a key operation

• in iterative methods

• in explicit methods, where the operator can be written

as a matrix-vector product.

• Much effort has been focused on developing effective data

structures for this problem including the recent application

of auto-tuning approaches to optimize aspects of the data

structure.

• As we’ve seen, a major impediment to improving

performance of this operation is that it is memory-

bandwidth intensive.

26

Dense Matrix Vector Multiply

• NxN Dense Matrix-Vector multiply is also tested. N is up to 10,000.

• Two block sizes 4x4 and 5x5 are employed.

• The tests clearly show better performance with S-BCSR format.

27

Dense Matrix Vector Multiply (cont’d)

• When N is larger and the data

is out of L3 cache, S-BCSR

format is steadily better than
the original BCSR format.

Block

Size

Power 4 Power 5 Power 6

4x4 25 – 35 45 -- 50 70 -- 90

5x5 20 -- 60 100 – 150 60 -- 90

Performance Improvement from S-BCSR format

(exclude the singularity)

28

Streamed formats on Intel processors (cont’d)

• The results of Dense Matrix-Vector Multiply show that

streamed BCSR format can improve 10-25% compared to

the traditional BCSR format.

