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Summary

» Algorithms and Data Structures need to take memory
prefetch hardware into account

» This talk shows one example - Matrix-vector multiply
* As we’ll show, the results can be dramatic

» Prefetch is designed to improve realized memory
bandwidth. How important is that?
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Stream Performance Estimate

» Easy estimate: 11 GB/s =2 * 5.5 GB/Sec to L3, 5.5 GB/
Sec to main memory

e Minimum link speed is 5.5 GB/s each way, Stream adds both
* Measured performance is\1.2 GB/s!

e Why?
* Time to move each cache line

e 5.5 GB/s ~ 8 bytes/cycle (memory bus bandwidth)

e ~60 cycles L2 miss (latency)

e 64 byte cache line = 8 cycles (bandwidth) + 60 cycles (latency) =
68 cycles or ~ 0.94 byte/cycle (read)

e Stream bytes read + bytes written / time, so stream estimate is 2
*0.94 byte/cycle, or 1.3 GB/se

* This is typical (if anything, better than many systems
because L2 miss cost is low)

» (there’s more to this analysis, of course)
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Example: Sparse Matrix-Vector Product

» Common operation for optimal (in floating-point operations)
solution of linear systems

e Sample code (in C):

for row=1,n
m = i[row] - i[row-1];
sum = 0;
for k=1,m
sum += *a++ * x[*j++];
y[i] = sum;

» Data structures are a[nnz], j[nnz], i[n], x[n], y[n]
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Realistic Measures of Peak Performance

Sparse Matrix Vector Product
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

Theoretical Peak M Oper. Issue Peak
W Mem BW Peak = Observed
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Power 4 (1> Pentium 4 Xeon (2.4 GHz)
Thanks to Dinesh Kaushik;
ORNL and ANL for compute time 7
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Simple Performance Analysis

e Memory motion:
* nnz (sizeof(double) + sizeof(int)) +
n (2*sizeof(double) + sizeof(int))
» Assume a perfect cache (never load same data twice;
only compulsory loads)
» Computation
e nnz multiply-add (MA)
* Roughly 12 bytes per MA
* Typical WS node can move 1-4 bytes/MA
* Maximum performance is 8-33% of peak
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Comments

» Simple model based on memory performance gives good
bounds on performance
» Detailed prediction requires much more work; often not
necessary or relevant to the algorithm designer
* Note that a key feature of the model is the use of
measured sustained memory bandwidth
* In many cases, achieved performance is close to that
limit; advanced techniques, such as auto-tuners, cannot
significantly boost performance
* But the measured memory bandwidth is low relative to the
raw hardware bandwidth...
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Prefetch Engine on IBM Power Microprocessors Inefficiency of CSR and BCSR formats

* Beginning with the Power 3 chip, IBM el * The traditional CSR and Blocked CSR are hard to
provided a hardware component called = reorganize for data streams (esp > 2 streams) to enable
a prefetch engine to monitor cache D E—

prefetch, since the number of non-zero elements or blocks
for every row may be different.

* Blocked CSR (BCSR) format can improve performance for
some sparse matrices that are locally dense, even if a few
zeros are added to the matrix.

If the matrix is too sparse (or structure requires too
many added zeros), BCSR can hurt performance

misses, guess the data pattern (“data
stream”) and prefetch data in
anticipation of their use.

« Power 4, 5 and 6 microchips enhanced
this functionality.

Data Streams L2 Cache (MB) | L3 Cache(MB)
Power 4 8 ~1.5 32 The Prefetch Engine on Power3 chip
Power 5 8 1.875 36
Power 6 16 4 32

Data Stream and Cache Information
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Streamed Compressed Sparse Row (S-CSR) format Streamed Blocked Compressed Sparse Row (S-BCSR) format

¢ S-CSR format partitions the sparse matrix into blocks along rows with size of bs. Zeros * When the matrix is locally dense and can be blocked efficiently with a few ZEROs added
are added in to keep the number of elements the same in each row of a block. The in, we can restore the blocked matrix using the similar idea as S-CSR format. The first
column indices for ZEROs in each row are set to the index of the last non-zero element rows of all blocks are stored first, then second, third ... and last rows. Using 4x4 block for
in the row. The first rows of all blocks are stored first, then second, third ... and bs-th example, it will generate R, G, B and P four equal length streams. We call this the
rows. Streamed Blocked Compressed Row storage format (S-BCSR).

¢ For the sample matrix in the following Figure, NNZ = 29. Using a block size of bs = 4, it
generates four equal length streams R, G, B and P. This new design only adds 7 zeros A sparse matrix with 4X4 blocks Streamed Blocked Compressed Sparse Row format
every 4 rows. (S-BCSR)

A sparse matrix (N = 12, NNZ= 29) Streamed Compressed Sparse Row format

(S-CSR) - val LLLITTTT IR R
val i ;
R [IIIIId] :> [TITITTITITITI] G
:> G
B [(CIITIT T . P
H 1 P CLIelol 1] ind AT

ptr [o] 4] 6]9] ptr [of2]3]4]
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Codes for CSR and S-CSR-2 formats

CSR S-CSR-2

void CSR(double *v, double *x,

double *z, int *ii, int *idx, int NROW) int *idx, int NROW)

void S_CSR_2(double *v, double *x, double *z, int *ii, #pragma omp parallel for \

private(i,j,nm, sum1,sum2,v10,v20,iix1,iix2) \

schedule(static)
int i, j,n, *idxp; intrbs = 2; for (i=0; i<MNR; i++) {
double sum1, *v1, xb; int MROW =NROW/rbs, rrows = NROW©%rbs, rslast sum um2 = 0.0;
= tbs; nm =iifi] - ii[0];

#pragma omp parallel for \
private(i,j,n, sum1,v1,idxp,xb) \ double *v1, *v2;
schedule(static) int  *ix1, *ix2;
for (i=0; |<NROW i++) {

int i, j, k, nl, nm, ilen;

double sum1, sum2;

ilen =ii[MROW] -ii[0];

[
xb = *(x + (*idxp++)); ix1=idx; vli=v;
suml += (*v1++)*xb; ix2 = ix1+ilen; v2 = vl+ilen;
}
z[i] = sum1; int MNR = MROW-1;
if(rows == 0 ) MNR = MROW;
} double *v10, *v20;
int  *iix1, *iix2;
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if(rrows > 0) {MROW++; rslast = rrows;}

Il two streams
vi0=v1l +nm; v20=v2 +nm;
iix1=ix1 + nm; iix2 =ix2 +nm;

for (j=ii[i]; j<iifi+1]; j++){
suml += *(v10++)*x[*iix1++];
SUM2 += *(v20++)*x[*iix2++];
Ml
Z[rbs*i ] =sumil;
Mii

Z[rbs*i+1] = sum2;

i=MNR;
if (mows == 1) {
.0;

suml += *(v10++) * X[*iix1++];
Z[rbs*i ]=sumi;
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Codes for BCSR-4 and S-BCSR-4 formats

BCSR-4
void BCSR_4(double *v, double *x, double *z, int *ii, int *idx, int MROW)

int i, j, n, *idxp;
double x1,x2,x3,x4,x5, sum1,sum2,sum3,sum4,sums;
double *xb, *v0;

#pragma omp parallel for \
private(i, j, n, suml, sum2, sum3, sum4, v, xb, idxp) \
schedule(static)
for (i=0; i<MROW; i++) {

] - ii[0];

VO = v+16*n;

idxp = idx+n;

um2 = sum3 = sum4 = 0.0;

for (j=iii]; j<iifi+1]; j++) {
xb = X + 4*(Yidxp++);
X1 = xb[0]; x2 = xb[1]; X3 = xb[2]; x4 = xb[3];
sum1 +=v0[ 0] *x1 +vO[ 1] *x2 + vO[ 2] *x3 + vO[ 3] *x4;
sum2 +=vO[ 4] *x1 + vO[ 5] *x2 + vO[ 6] *x3 + vO[ 7] *x4;
sum3 += vO[ 8] *x1 + vO[ 9] *x2 + VO[10]*x3 + VO[11]*x4;
sum4 += vO[12]*x1 + vO[13]*x2 +VO[14]*x3 + VO[15]*x4;
V0 += 16;

}
2[4% ] =suml; 2Z[4*i+1] = sum2;
2[4%+2] =sum3;  z[4*i+3] = sum4;

}
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S-BCSR-4

void S_BCSR_4(double *v, double *x, double *z, int *ii, int *idx, int MROW)

int i, j,n, len, *idxp;
double x1,x2,x3,x4,x5, sum1,sum2,sum3,sum4;
double *xb, *v0, *v1, *v2, *v3, *v4, *v10, *v20, *v30, *v40;

len = (i[MROW] - ii[0])*4;
vl=v; v2=v+len; v3=v+len*2; v4 =v+len*3;

#pragma omp parallel for \

private(i,j,n,sum1,sum2,sum3,sum4,v10,v20,v30,v40,xb,idxp) \
schedule(static)
for (i=0; i<MROW; i++) {
n ii[o];
v10 1+4*n; V20 = v2+4*n;
v30 =v3+4*n;  v40 = v4+4*n;
idxp = idx+n;

suml = sum2 = sum3 = sum4 = 0.0;

J<iifi+1]; j++) {

+ AH(ridxpH+);

x1 = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3];

sum1 += v10[0]*x1 + VIO[1]*x2 + v10[2]*x3 + v10[3]*x4;
sum2 += v20[0]*x1 + v20[1]*x2 + v20[2]*X3 + v20[3]*x4;
sum3 += v30[0]*x1 + v30[1]*x2 + v30[2]*x3 + v30[3]*x4;
sumé4 += v40[0]*x1 + v40[1]*x2 + v40[2]*x3 + v40[3]*x4;
v10 +=4; v20 += 4; v30 += 4; v40 += 4;

2044 ]=suml;  z[4%i+1] = sum2;
2[4%i+2] = sum3;  z[4%i+3] = sum4;
}

}
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Some Sparse Matrices used in the tests

» We used matrices from the University of Florida collection

* All the codes were compiled

with “xlc_r —O3 —gstrict —q64 2”91'_':,25
-qtune=auto -qarch=auto”. itz

. airfoil_2d
64KB page size was set for Tl

text and data on Power5 and  gupta3
Power6 chips. Hood

msdoor

e Performance measured is Ldoor

besstk25
that average of three runs —

after a “cold start” run qasfk
nd24k
af_shell9
audikw_1
cfd2
raefsky3_5
finance256

N

494
179860
14214
116835
16783
22054
415863
952203
15439
74752
66127
72000
504855
943695
123440
106000
37376

NNZ  Matrix N NNz

1080  bcsstm27 1224 28,675
5146478 gematll 4929 33,185
259688  bai-dw4096 8192 41,746
766396  bcsstk35 30237 740,200
4670105  crystk03 24696 887,937
5494489 goodwin 7320 324,784
10328399  bcircuit 68902 375,558
23737339  shyyl6l 76480 329,762
133840 bbmat 38744 1,771,722
335872 olafu 16146 515,651
863353  venkat50 62424 1,717,792
14393817 pwt 36519 181,313
9046865 sinc18 16428 973,826
39297771 ohne2 181343 11,063,545
1605669 thermal2 1228045 4,904,179
7443840 TSOPF_RS_b2383 38120 16,171,169
167936 s3rmt3ml 5489 112,505
15

Performance Ratio compared to CSR format

¢ S-CSR format is better than CSR format for all (on Power 5 and 6) or Most ( on Power 4) matrices
¢ S-BCSR format is better than BCSR format for all (on Power 6) or Most ( on Power 4 and 5) matrices

«  Blocked format performance from 'z to 3x CSR.

Performance Ratio Compared to CSR format

2 ot it banith
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S-CSR formats with two and four streams MPI with 4 nodes

e S-BCSR-4 is generally better than S-BCSR-2 on Power 6.

« On Power 4 and 5, these two are mixed. » Parallel tests with MPI using 4 nodes on P5 and P6. At most 50%
e S-CSR-4 format can achieve over 2x performance improvement of CSR. improvement achieved.

» Probably due to communication overhead (these are small matrices)

Performance Ratio Compared to CSR format
250 -S-CSR-2 Perf Ratio pared to CSR format
2.00 + mscsRg (MP1with 4 nodes)
. 250 S.CsR4
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SMP with 4 threads Comparison of S-BCSR-4 format to BCSR-4 format
+ SMP with 4 threads also tested on P5 and P6. Typical performance boost of « The matrices are chosen with large data size (> 32 MB) and the performance
1.5-2x over CSR of BCSR format is close to or better than CSR format.
* Shows prefetch works with multin;etthreads (rtn%rsi ftestst needed) « Performance Improvement of S-BCSR-4 format compared to BCSR-4 format:
Perf e Ratio ¢ edto orma
(SMP with 4 threads) mSOSR2 P4: 20 -60%, P5: 30 -45%, P6: 75 -108%
2.50 mS-CSR-4
% 2.00 + - Performance Ratio compared to BCSR-4 W Powerd
§ 1.50 fg- 2.50 W Power5
E lm | || I I I I I | g .Powers
5 050 | %
0.00 /MM R S . . ‘ . . - e £
2.50 E
g 2.00 %
g 1.50 e &
5 1.00 g
5 050 &
0.00

PRI 58
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Streamed format on Intel processors Summary and Future Work
¢ The tests were also run on abe.ncsa.uiuc.edu (Xeon/Clovertown, 2.33 GHz, 2x4 MB L2 e The streamed CSR and BCSR storage formats can signiﬁcanﬂy
cache)

improve the performance of SpMV for a variety of matrices on IBM

¢ S-CSR-2 and/or S-CSR-4 format can result in better performance than CSR format for processors. Over 100% performance improvement can be achieved.

many matrices.
«  S-BCSR-4 format is better than BCSR-4 format for all the matrices except for * Simulation results for POWER?7 also are good
“bcsstm27”, which is small and fits in cache. For most matrices, S-BCSR format provides « The new formats also show the benefits on Intel processors.
a 10 - 20% of performance improvement. . . .
» We will compare the new format with other auto-tuning packages, such
as Berkeley-OSKI, and with other approaches to improve performance
within rows (such as sorted CSR)

* New formats will be provided within PETSc
a‘ ¢ Initial results: S-CSR provides more performance than OSKI
] ‘ » Alignment and SIMD instructions will also be considered in the new
formats.

»-t.f«” R L S’Kfff"'f LSS TS ="’ S 57 « Perhaps most important — extension to other matrix-vector operations
21 used in preconditioners 22

Performance Ratio compared to CSR format on Intel

Performance Ratio
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Yet Another Complication

5.5GB's

* How many loads and stores from memory are required by B This diagram )|
a=b leaves off the
« Natural answer is _met imtE’Oftant .
« One load (b), one store (a) _ :gtgzcr:])?tla%rt]ween "f::
» For cache-based systems, the answer is components
e Two loads: cache!ine contqiqing b and cacheline containing a B Stated values
» One store: cacheline containing a are never
» Recall the 2 read for one write path to L1 cache observed by the
. g(g/main memory, max rate is then 2/3 * 5.5GB/sec, or 3.7 programmer ow o :::_ ;;.;_ w i
S LAGURs link 2.8 Ghit's link m‘: S12MB

» Still almost double the best, hand-tuned stream kernel

23 24
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Sparse Matrix and Vector Multiply (SpMV) Dense Matrix Vector Multiply

. SpMV is a key operation « NxN Dense Matrix-Vector multiply is also tested. N is up to 10,000.
¢ Two block sizes 4x4 and 5x5 are employed.

* initerative methods ¢ The tests clearly show better performance with S-BCSR format.

* in explicit methods, where the operator can be written
as a matrix-vector product.

* Much effort has been focused on developing effective data
structures for this problem including the recent application
of auto-tuning approaches to optimize aspects of the data
structure.

* As we've seen, a major impediment to improving
performance of this operation is that it is memory-
bandwidth intensive.

MFLOPS for DMV on Power & MFLOPS for DMV on Power 5 MFLOPS for DMV on Power 6

e

-

- acies

MFLOP/s
JEEEBERIRE
MFLOP/s
FREREREE
MFLOP/s
LENRRERERE
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Dense Matrix Vector Multiply (cont’d) Streamed formats on Intel processors (cont’d)
« When N is larger and the data - — « The results of Dense Matrix-Vector Multiply show that
is out of L3 cache, S-BCSR i"_ —————1 streamed BCSR format can improve 10-25% compared to
format is steadily better than |12 the traditional BCSR format.
the original BCSR format.
N - - - - - Performance of DMV on Intel Chip Performance Ratio of DMV compared to BCSR format on Intel Chip
Performance Improvement from S-BCSR format o i *:::A ; :Z SRS
(exclude the singularity) o] isioonos E -
Block Power 4  Power5 Power 6 . - g‘”" ! E =
Size i " Wl Ry B £ i:
4x4 25-35  45--50  70--90 " £
5X5 20 - 60 100 - 150 60 - 90 - i 0 2000 4000 N 00 4000 10000 “00 2000 4000 N 6000 8000 10000
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