
MPI at Exascale: Challenges
for Data Structures and

Algorithms

William Gropp

2

Challenges at Exascale

• Exascale is not just
“more” Petascale

Concurrency

Fault Resilience

Memory Capacity

Power and Energy

• These are just what’s
needed to get something
to run at Exascale

For an Exascale system
to work effectively on

applications, it must

scale well

• This implies
communication/
computation overlap

ExaScale Computing Study:
Technology Challenges in

Achieving Exascale Systems

Peter Kogge, Editor & Study Lead
Keren Bergman
Shekhar Borkar
Dan Campbell
William Carlson
William Dally
Monty Denneau
Paul Franzon
William Harrod
Kerry Hill
Jon Hiller
Sherman Karp
Stephen Keckler
Dean Klein
Robert Lucas
Mark Richards
Al Scarpelli
Steven Scott
Allan Snavely
Thomas Sterling
R. Stanley Williams
Katherine Yelick

September 28, 2008

This work was sponsored by DARPA IPTO in the ExaScale Computing Study with Dr. William Harrod
as Program Manager; AFRL contract number FA8650-07-C-7724. This report is published in the
interest of scientific and technical information exchange and its publication does not constitute the
Government’s approval or disapproval of its ideas or findings

NOTICE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

3

What Will Exascale Systems
Look Like?

• Constraints

Power: < 100MW total system (including
cooling and storage)

• Clock rate 4-10 GHz

• Implies about 108 functional units per peak ExaOp

• 100-1000 times as power efficient as current
Petascale systems

• 4-40 pJ/operation

Cost and Size

• 100-1000 Racks

(DARPA UHPC RFI envisions a 1PF Rack/half rack)

Two obvious approaches

4

Very light-weight cores

• Very simple, low-power processors

in-order execution

small caches

no hardware cache coherence

• Intel TFLOPS processor an early
example

5

Heterogeneous

• Several different cores, optimized
for different operations

GPGPU + Commodity processor a
very small step in this direction

Exascale likely to be more tightly
integrated (for power, fault) and
more specialized (for power, density)

6

Energy and Power

• Energy is “wasted” in data motion

• Need to compute closer to memory

Argues for embedded memory processors
(EMP)

• Network Costs

Specialize here as well

Simple operations, offloaded from processor

to make effective use of space and power

Not offloaded to increase performance at
the cost of additional power

7

How many MPI processes are
there?

• Case 1: MPI Everywhere

Memory needs if all data local

Distributed data

• Architectural support

• Case 2: nested parallelism

Hierarchical models and support;
progress

• Natural decomposition

• Cross-node decomposition

8

The Homogenous Approach

• MPI Everywhere

One MPI “process” per core

Note that an MPI process may be
lighter-weight than an OS process

• E.g., tmpi (thread MPI)
Used combination of compiler techniques and
runtime to let each MPI “process” be an OS
thread, with global variables handled correctly

• System parameters include

108 cores

1018-1022 bytes mass storage

9

Lets look at possible issues

• Basic API Issues

• Memory use implied by distributed
Memory model

• Scalability of algorithms used to
implement MPI features

10

Basic API Issues

• 108 cores requires 27 bit integer to enumerate

Ranks will just fit into 4 byte integers

• Possible problem: virtualization of processes to provide
latency hiding could push this to more than 31 bits (ranks are
signed integers)

Good news – with that many cores, memory / core is
likely to be under 4GB

• MPI_Aint can be 4 bytes

• 1018-1022 bytes mass storage requires 60-74 bit
integers

MPI_Offset must be large than an 8-byte integer

• Datatypes

Do these use MPI_Aint (4 bytes) or MPI_Offset (12-16
bytes)?

Using Datatypes for Messages and IO is elegant

• But offsets in messages are relative to one MPI process
whereas offsets in IO may be relative to p-processes

11

Replicated Data Structures

• MPI objects are often used by
many/every process

Simple and natural implementation is
to have a representation in each MPI
process

• Even simple objects, such as
datatypes, represent significant

storage when there are 108 copies

12

MPI_Group

• Consider an MPI_Group, consisting of g
members

Either enumerated or a collection of strides

• No MPI_Group_split

• Thus no implicit description of groups

An enumerated list is good (even efficient)

for <1K processes

Storage is O(pg) total

• Some groups are collective (results

from MPI_Comm_group), some are
individual (groups used in RMA PSCW)

13

RMA Windows

• MPI_Win_create allows each process to specify
a different local offset

This provides flexibility for applications with dynamic
object creation (no need to require “symmetric”
allocation of memory

• However, to perform direct remote memory

access, the origin process needs the offset of
the target process’s memory window

Simple and obvious implementation is a table of
offsets

O(p2) memory required

For 108 processes, this is 4*1016 bytes (40 Petabyes)

14

MPI Communicators

• Communicators have a similar problem
as RMA Windows

• Each communicator must map each

rank to a specific MPI process

Some one needs to be able to map this to a

specific physical location in the parallel
computer

Easiest: maintain a table

• O(p2) – 40 Petabytes again

• May have additional storage, such as state of
connection/communication with each remote
process

15

Using Special Information

• Some special communicators can use implicit
representations

E.g., MPI_COMM_WORLD (and its dups) on hardware
where rank can be mapped to specific hardware,
such as on a mesh

MPI_Comm_split could also store implicit
representation in some cases

• Row or column in a mesh

• Immediate neighbors

But the general case no practical implicit
representation exists

Should it be possible to manipulate implicit
representations directly?

• What if physical network is not simple?

16

Cost of non-Canonical
Communicators

• MPI_Bcast on MPI_COMM_WORLD and
“MPI_COMM_WORLD – 1 process”

See “Toward message passing for a million
processes: characterizing MPI on a massive
scale BlueGene/P”, Balaji, Chan, Thakur,
Gropp, and Lusk

17

Communication Queues

• Simple implementations of message-
passing queues can lead to problems

Simple implementation uses a single queue

In alltoall communication, each search-and-
remove takes O(p) time, for O(p2) total
work

See “Non-Data-Communicatin Overheads in
MPI: Analysis on Blue Gene/P, “ Balaji,
Chan, Thakur, Gropp, Lusk

18

Some Queue Options

• Single Queue for all communications

Excellent performance on pingpong benchmark

Search time O(q), q=queue length

• Separate Queue for each partner

Search time likely to be O(1)

Requires O(p) storage on each process, or O(p2)
total

• Optimziation: queue only for active partner

• Adds overhead to deal with new partners, agin old
partners

Has “MPI_ANY_SOURCE” problem

• Single Queue, with hash for search
Adds some extra overhead (and thus costs power
and time)

19

Aside on the
“ANY_SOURCE” problem

• Many data-parallel applications are (or should be)
deterministic and do not require ANY_SOURCE

• Why not get rid of it?

More dynamic computations may be weakly deterministic –
enforcing a specific completion order may impact
scalability

May also not have predictable source

• Should we look at alternatives?

Most applications either want messages from a specific
sender or the next message from any sender in the group
of senders-whose-destinations-I-don’t-know-in-advance

Why mix these in the same interface?

Use a separate interface for each; optimize for each type
separately

Same idea as heterogeneous nodes – optimize for separate
function

• Something for MPI-3?

20

Buffer Management

• Common to use eager buffering to reduce overhead of
short messages

• Simple (and most efficient for p < 1k) approach is to
preallocate a buffer for each process

O(p2) data required

• For a mere 16k bytes/buffer, requires 2*1020 bytes (200
Exabytes)

• Alternative – provide buffering to preselected partners

Matches many simulations, particular PDE-based ones

Ancient approach (available on Intel Paragon)

• More sophisticated alternative, adaptive buffer
allocation

Current project of Dooley, Kale, Gropp
• Reduces necessity for rendezvous or other control messages (good)

• But adds overhead to decision (bad)

• Recall control messages use energy with performing useful
computation

21

Common Issues

• Partitioned, local address space

Gives good locality, but

Encourages “early, deep copies”

• Alternate approach

Late, shallow copies

Also known as caching

• But
Adds a level of indirection

MPI Implementation must have low-latency access to
remote data

Programmer-assisted prefetch will (probably) be
needed

• As with current, high-performance caches

22

Replicated Data Structures

• MPI Communicators are an example of using
replication of identical or similar data
structures

User applications (too) often do the same thing

Cannot afford this approach at Exascale

• One solution

Don’t replicate - distribute

Cache values actually needed locally
• Adds overhead – looking up in cache must be very fast

Use remote load/get on a cache miss

• Mapping must be simple to compute (no tables!)

23

Example of the Benefit of
Programming for Prefetch

• S-CSR format is better than CSR format for all (on Power 5 and 6) or Most (on Power 4) matrices

• S-BCSR format is better than BCSR format for all (on Power 6) or Most (on Power 4 and 5) matrices

• Blocked format performance from to 3x CSR.

Performance Ratio Compared to CSR
format

Work of Dahai Guo (NCSA)

and Gropp

24

Performance Requirements
for an AlltoAll Algorithm

• Global 3D FFT a
very demanding
application

• Best case
assumption: only
communication
cost, using LogP
model (with
overhead = zero)

• Current latency
+overhead times
are .25-10 usec

Roughly the right
edges

10 12 10 10 10 8 10 6
10 12

10 11

10 10

10 9

10 8

10 7

10 6

L

g

Feasibility Region for 3D FFT

16K cube, Ideal
16K cube, Real World
64K cube, Ideal
64K cube, Real World

Work of Gahvari

and Gropp

25

Implementing MPI
Operations

• Some MPI operations are non-local

For these, scalability must be evaluated

• MPI_Comm_split is a powerful, elegant
method for creating new communicators

No explicit enumeration of processes

• The other option is to create a group, then use
MPI_Comm_create

But using a group (with enumerated members)
requires O(p2) total space

• But can MPI_Comm_split be implemented
scalably?

26

Implementing COMM_SPLIT

• MPI_COMM_SPLIT(inComm, color, key,
&outComm)

Processes with same color are in the same

output communicator

Key used to order ranks

• Simple Algorithm

Alltoall (color,rank)

Each process locally finds those in the same

color, ordered according to rank

Create new communicator from that

information

27

Scalability Analysis

• Allgather

O(p2) space to store tables
• Communication time depends on interconnect,

but includes O(p) term for amount of data and
probably at least log p latency – O(p2) total
communication work

• P logp time to sort to find processes in
the same communicator and order rank
by key.

• The Simple algorithm for

MPI_Comm_split is not scalable

28

A (sketch of a more) Scalable
Algorithm

• Work of Paul Sack

• Solution: distributed tree structure for communicators

No process ever has the entire data structure

Use parallel sort by color/key

Then distribute results to the processes sharing the same
color

• Space is O(p4/3)

For 108, this is only about 4 * 1010

• Further tune by hybridizing

Some local copies

• Faster, but redundant – watch that energy use

Design for smooth performance from small to enormous

Also optimize for special cases, such as

• Few colors

• Key=rank in oldComm

29

Summary for MPI
Everywhere Case

• Exascale stretches the 64-bit integer space

Should MPI skip from external32 directly to external128?

• Flexibility of independent operations at every rank add cost in
time/space

But other extreme, rigid, COMM_WORLD – only, limits applications
(e.g., AMR, dynamic algorithms)

• Replicated data structures are not viable at (homogeneous)
Exascale

Both software and hardware support required for late/shallow
copies

Such features are also of general value to the programmer

• Algorithms must be revisited for scaling

COMM_SPLIT is not as bad as you might think

Solution leverages support for distributed data structures

But all-to-all algorithms are in trouble

30

Is a Homogeneous System
the Answer?

• What if instead we have 100k
“processes”, each with 1000-fold
parallelism?

MPI already runs (with some struggle) with
this number of processes

Implementations do need improvement

Enumeration of ranks etc. is still a concern
• Note memory capacity is an issue for exascale

systems – total memory per core may be low
relative to current systems

This still adds complexity to the

programming model

31

Hybrid Models for MPI

• MPI on SMP

Typical implementation

• Use regular processes for each MPI process, use special
services to share memory between the processes

An alternative

• Use each MPI process on the SMP is a thread that is
part of a single operating system process

• See “Optimizing threaded MPI execution on SMP
clusters”, H. Tang and T. Yang

• Must use a special compiler

• Global variables in the user program must be thread-
private by default

• Question: should we rethink the identification

of MPI processes with OS Processes?

Particularly with respect to memory requirements

32

Generalized MPI Processes

Let an MPI “Process”
span multiple nodes

• Solves the memory
problem

• Provides a way to
address the local/global
problem

Issues
• What does a send with

a remote pointer mean?

• What is the address
space for an MPI
process?

• Initializing - who is in
charge?

• Programming model
support for the MPI
“Process”

Distributed OpenMP?

UPC? CAF?

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

MPI Process

33

More General MPI Hybrid
Programming Models

• Why consider the Hybrid Model with PGAS or other
programming models?

Load balancing

Shared data (reduce memory pressure, particularly for
processor-rich (and hence memory poor) nodes)

Component software (use the best programming model to
implement a component)

OpenMP and MPI understood

What about others: MPI/UPC (or PGAS) interoperability

• The following is based on discussions at a “Workshop on
collective communication primitives in PGAS and SPMD
languages”, May 2008, IBM Hawthorne

• Possible combinations for MPI and UPC (or other PGAS)
languages include:

MPI processes are UPC programs

MPI processes are UPC threads

UPC Programs are combined into MPI programs

34

MPI Processes are
UPC Programs

• MPI Processes are
UPC programs (not
threads), spanning
multiple nodes. This
model is the closest
counterpart to the
MPI+OpenMP model,
using PGAS to
extend the "process"
beyond a single
node. (An MPI
process need not be
an OS process).

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

MPI Process/
UPC Program

35

MPI Processes are UPC
Threads

• The program starts as a single
UPC program. Each UPC thread
calls MPI_Init (or
MPI_Init_thread). The process
management system must
permit UPC programs to use
MPI_Init to also become MPI
programs.

• The program starts as a single
MPI program (started with
mpiexec). UPC is initialized
somehow

UPC initialized explicitly with a
routine call

UPC initialized implicitly
because UPC compiler knew this
was an MPI + UPC program

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

36

MPI Processes are UPC
Threads (con’t)

• The MPI program is tiled with
separate UPC programs. That is,
every MPI process is also a UPC
thread, but not all MPI processes
belong to the same UPC program.

a) The UPC programs are created from
MPI subcommunicators with an
explicit call, e.g., add a
upc_init(MPI_Comm) (proposed by
Marc Snir)

b) The UPC programs are defined at
startup through interaction with the
process management system; e.g.,
an extension to mpiexec defines how
the MPI processes are tiled with UPC
programs.

c) Like (b), but not all MPI processes
correspond to a UPC thread. This is
like (a) if not all MPI processes were
to call upc_init.

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

37

The Program is a Collection
of UPC Programs

• The program starts as a collection
of separate UPC programs.

Use MPI_Comm_connect/accept to
become an MPI program on all
threads

Use MPI_Comm_connect/accept to

become an MPI program on a subset
of UPC threads

• Both require efficient support for
updating routing information

38

Handling Faults in Memory

• A major source of faults in current, large
systems are transient memory faults (e.g.,
two-bit upsets)

• Some data must be robust (cannot be

recomputed, updated in random way)

Control data, often on stack. Failures not
recoverable.

• Some data may be recoverable
Large arrays. If updated en masse, recovery
possible with in-memory ECC

• Should we have different kinds of memory for
these different cases?

39

MPI Fault Issues: Memory

• MPI application data is in several
categories

Shared, updated frequently. Failures
not recoverable

Static (const object), such as
communicator. Rebuild from
software; ECC possible

Cached. Recover from other copies

possible

40

Aside: Thoughts on Reducing
Impact of Faults

• User application data is in similar
categories to MPI data

May want to generalize this:

• Stack data is robust; use hardware to provide
additional reliability

• Large object (e.g., array) data is protected in
collaboration with programming model, algorithm

Need not guarantee all faults handled

(impossible anyway). (Just make the rate of
unrecoverable faults small enough)

• Beginning to explore these ideas, particularly wrt
numerical algorithms, with Elizabeth Jessup of U
Colorado at Boulder

41

Conclusions

• An MPI Everywhere model will be challenging
for an Exascale system

Not impossible, however, particular with more
distributed implementation strategies

Such strategies will be needed by applications as
well

• A Hybrid Model reduces demands on MPI

But increases demands on an efficient interface
between MPI and other programming models

• Faults, scaling may require new algorithmic
approaches, both in applications and in MPI
implementations

