
Update on Libraries for
Blue Waters

William Gropp
www.cs.illinois.edu/~wgropp

1

Outline

• Summary of Current Work on Libraries for
Blue Waters
– CSR updates (from paper, now accepted)

• In particular, parallel performance
• PETSc updates results

– IO Tests
– Nonblocking Allreduce in CG

• Throughout Collaboration Opportunities

2

Some Libraries Requested by Applications
Planning on Using Blue Waters

Required Scientific Libraries

FFTW

Hypre, P3DFFT

FFTW, HDF5, GSL, P3DFFT

BLAS, LAPACK, ScaLAPACK

P3DFFT, FFTW, ESSL

pnetCDF

FFTW, ESSL, LAPACK, boost, SPRNG

FFTW, ESSL, LAPACK

PETSc, GSL, FFTW

HDF5
BLAS, LAPACK, EINSPLINE, boost,
HDF5

• Organized by PRAC
application

• Not all have responded
• Usual suspects: FFT,

Matrix-matrix multiply
• I/O libraries included

3

New Sparse Matrix Formats

• Sparse matrix operations are memory-
bandwidth bound

• Conventional formats do not exploit prefetch
hardware (particularly on Power architecture)

• We have developed new “streamed” formats
as variations of compressed sparse row (CSR)

• This updates results presented at previous
INRIA-Illinois Joint Lab Workshops

4

Progress in 2010

• New implementations
– Exploit the Power7 VSX (double precision vector)

instructions
– Comparisons when all threads executing SpMV
– Add SSOR sweep (for preconditioning) and Sparse

LU triangular solve (ditto)
– Integration into PETSc

5

SpMV - Serial Run on Power7
• The tests are on a P7 machine (BlueBiou in Rice University).
• The streamed format S-CSR-2/S-CSR-4 with VSX intrinsic functions achieves 30 – 80%

performance improvement compared to the traditional CSR format.
• The streamed 4x4 blocked format achieves 70 to over 100% improvement over the

BCSR 4x4 format.
• Hand-written VSX code for S-BCSR-4 format doesn’t help much.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

Pe
rf

or
m

an
ce

 R
at

io

stream_un2

BLK12-VSX

S-CSR-2

S-CSR-4

S-CSR-2-VSX

S-CSR-4-VSX

SpMV on BlueBiou

0.00

0.50

1.00

1.50

2.00

2.50

Pe
rf

or
m

an
ce

 R
at

io

BCSR-44-VSX

S-BCSR-44

S-BCSR-44-VSX

SpMV on BlueBiou

6

SpMV--- Multi-Thread Tests on P7
• The thread number changes from one to eight on the same chip. Every thread uses an individual

core and computes a complete SpMV.
• The streamed format still achieves over 20% improvement for most of the sparse matrices when

four or five cores on the same chip are employed.
• The performance ratios of the streamed formats degrade when the thread number increases,

because
– the L3 cache is totally 32 MB for the eight cores, and it can be easily used up when more and more data is

prefetched into the cache.

– There is only one memory controller on the chip. Too many prefetch requests exhaust the load channels.

• The multi-thread tests on the P7 MR machine show better results, since there are two memory
controllers per chip.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Pe
rf

or
m

an
ce

 R
at

io

Performance Ratios of S-CSR-2 and S-CSR-4 format

1
2
3
4
5
6
7
8

S-
CS

R-
2

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

S-
CS

R-
4

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Performance Ratios of S-CSR-2 and S-CSR-4 format
1
2
3
4
5
6
7
8

S-
CS

R-
-V

SX

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

S-
CS

R-
4-

VS
X

0.00

0.50

1.00

1.50

2.00

2.50

Pe
rf

or
m

an
ce

 R
at

io

Performance Ratio of S-BCSR-4 format to BCSR-4 format

1
2
3
4
5
6
7
8

7

SSOR iteration test results
• Either the S-CSR-2 or the S-CSR-4 format is better than the CSR format, the time ratio

between them can achieves as much as 1.30 on Power5, 1.70 on Power6, and 1.55 on
Power7.

• The S-BCSR-4 format is significantly better than the BCSR-4 format on Power6 and
Power7. The ratios can be over 1.80 on Power6, and 2.50 on Power7. On Power5, it is
around 1.10 ~ 1.25 for about half of the matrices.

0

0.5

1

1.5

2

2.5

3

Tim
e R

at
io

BCSR-4
S-BCSR-4
S-CSR-4

Po
we

r5

0

0.5

1

1.5

2

2.5

3

Po
we

r6

0

0.5

1

1.5

2

2.5

3

Po
we

r7

SSOR

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Ti
m

e
Ra

tio

S-CSR-2

S-CSR-4

Po
w

er
5

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Po
w

er
6

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Po
w

er
7

8

LU Triangular Solver Test Results
• Either the S-CSR-2 or the S-CSR-4 format is better than the CSR format, the time ratio

between them can achieve at most 1.40 on Power5, 1.76 on Power6, and 1.55 on
Power7.

• The S-BCSR-4 format is significantly better than the BCSR-4 format on Power6 and
Power7. The ratios between them can be over 1.85 on Power6, and 2.78 on Power7.
On Power5, it is around 1.10 ~ 1.25 for about half of the matrices.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Tim
e R

at
io

S-CSR-2

S-CSR-4

Po
we

r5

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Po
we

r6

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Po
we

r7

LU

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

Tim
e R

at
io

BCSR-4
S-BCSR-4
S-CSR-4

Po
we

r5

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

Po
we

r6

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

Po
we

r7

LU

9

The streamed format with PETSc
• PETSc is a popular scientific computing package in the HPC community, developed at

ANL
• The streamed format are implemented for MatMult, MatSolve, etc.
• Two matrices, cfd.1.10 (small) and cfd.2.10 (large), are tested on P5, P6 and P7 chips.
• The streamed format results in significant performance benefit on P6 and P7,

although it doesn’t achieve much on P5.

10

I/O Library Tuning
• I/O performance is a key problem for some applications, particularly at

scale
• Applications are using HDF5 and pnetCDF, as well as their own
• Currently evaluating the performance of Parallel NetCDF and Parallel HDF5

vs MPI-IO and POSIX, using the standard IOR (interleaved or random) tool
version 2.10.2.

• Note both pnetCDF and HDF5 use MPI-IO; pnetCDF is a thin layer over
MPI-IO
• pnetCDF performance should be very close to MPI-IO
• MPI-IO semantics less constraining than POSIX implies performance should be

no worse
• Not what we see on our Power5 (Blueprint) system
• Indicates implementation inefficiencies in libraries
• These sorts of tests are needed in any serious library development 11

Blueprint write 1x4 output

0

50

100

150

200

250

300

350

400

450

1M
B/

1M
B

1M
B/

2M
B

1M
B/

3M
B

2M
B/

2M
B

2M
B/

4M
B

2M
B/

6M
B

4M
B/

4M
B

4M
B/

8M
B

4M
B/

12
M

B
8M

B/
8M

B
8M

B/
16

M
B

8M
B/

24
M

B
12

M
B/

12
M

B
12

M
B/

24
M

B
12

M
B/

36
M

B
16

M
B/

16
M

B
16

M
B/

32
M

B
16

M
B/

48
M

B
32

M
B/

32
M

B
32

M
B/

64
M

B
32

M
B/

96
M

B
64

M
B/

64
M

B
64

M
B/

12
8M

B
64

M
B/

19
2M

B
12

8M
B/

12
8M

B
12

8M
B/

25
6M

B
12

8M
B/

38
4M

B
25

6M
B/

25
6M

B
25

6M
B/

51
2M

B
25

6M
B/

76
8M

B
51

2M
B/

51
2M

B
51

2M
B/

10
24

M
B

51
2M

B/
15

36
M

B
10

24
M

B/
10

24
M

B
10

24
M

B/
20

48
M

B
10

24
M

B/
30

72
M

B

MPIIO MaxMB

POSIX MaxMB

NCMPI MaxMB

12

Blueprint write 1x16 output

0

100

200

300

400

500

600

700

1M
B/

1M
B

1M
B/

2M
B

1M
B/

3M
B

2M
B/

2M
B

2M
B/

4M
B

2M
B/

6M
B

4M
B/

4M
B

4M
B/

8M
B

4M
B/

12
M

B
8M

B/
8M

B
8M

B/
16

M
B

8M
B/

24
M

B
12

M
B/

12
M

B
12

M
B/

24
M

B
12

M
B/

36
M

B
16

M
B/

16
M

B
16

M
B/

32
M

B
16

M
B/

48
M

B
32

M
B/

32
M

B
32

M
B/

64
M

B
32

M
B/

96
M

B
64

M
B/

64
M

B
64

M
B/

12
8M

B
64

M
B/

19
2M

B
12

8M
B/

12
8M

B
12

8M
B/

25
6M

B
12

8M
B/

38
4M

B
25

6M
B/

25
6M

B
25

6M
B/

51
2M

B
25

6M
B/

76
8M

B
51

2M
B/

51
2M

B
51

2M
B/

10
24

M
B

51
2M

B/
15

36
M

B
10

24
M

B/
10

24
M

B
10

24
M

B/
20

48
M

B
10

24
M

B/
30

72
M

B

MPIIO MaxMB

POSIX MaxMB

NCMPI MaxMB

13

Conjugate Gradient Alternatives

• Problem statement
– Conjugate Gradient requires that computation of a dot product whose

result is used in the immediately following step
– In parallel computing, this introduces a costly synchronizing operation

• Relationship to MILC
– A CG solve is a key part of MILC; performance estimates suggest that

the dot product will be a significant cost at the scale of Blue Waters

• Example solution
– Rearrange the computation of the dot product to allow it to overlap

the matrix products (at the cost of extra floating point work but no
communication)

14

The Conjugate Gradient Algorithm
while norm(r)/norm(b) >tol && iter<maxiters

iter = iter+1;
Ap = A*p;
alpha = rtr / (r'*Ap);
x = x + alpha*p;
r = r - alpha*Ap;
rtr_old = rtr;
rtr = r'*r;
beta = rtr/rtr_old; %% <rnew,rnew> / <r,r>
p = r + beta*p;

end 15

Stability of the Conjugate Gradient
l There are different ways to implement the CG

(conjugate gradient) method
l These ways depend on properties of the algorithm

and formula derivations, and will affect the stability
of the algorithm: accuracy is lost due to rounding
error accumulation when orthogonalizing at each
step of the iteration

l The following three of different implementations of
CG differ in the computation of α, or the
improvement at the step

16

Stability of the Conjugate Gradient (cont.)
l Method 1:

l The residual, r, and the search direction, p, are
orthogonal to each other

l Then, the improvement at the step is:

where <,> stands for the inner product of two
vectors

17

Stability of the Conjugate Gradient (cont.)
l Method 2:

l The residuals are orthogonal to each other
l This is also presented in Saad's book Iterative

methods for sparse linear systems (2nd edition)

l This is also the most stable method

18

Stability of the Conjugate Gradient (cont.)
l Method 3:

l Like in Method 1, except further simplifications
are done to reduce the improvement at this step
to the following form:

l Slightly better than Method 1, but worse than
Method 2

19

A non-blocking version of Method 2
while norm(r)/norm(b) >tol && iter<maxiters
iter = iter+1;
Ap = A*p;
s = Z + beta*s; % Could start t=r’*s here
S = M * s; % M is the identity in this example
t = r'*s; % the inner product would call MPI_Iallreduce; the local work would then be completed

%and an MPI_Wait call would wait for the communication to finish
alpha = rtr / t;
x = x + alpha*p;
r = r - alpha*s; %r - alpha*Ap;
z = z - alpha*S; % Could start rtr = r’*z here
Z = A*z;
rtr_old = rtr;
rtr = r'*z;
beta = rtr/rtr_old;
p = z + beta*p;

end 20

This approach requires additional
daxpy computations, but overlaps
dot products with other work and
communication

21

Summary

• Existing algorithms can be re-arranged to
better exploit memory hierarchy

• Consistency tests reveal performance
problems in library implementations
– Can also be applied within a library

• Trading arithmetic operations for more
communication overlap may provide better
scaling and performance

22

