Using MPI I/0O for Big Data

William Gropp
www.cs.illinois.edu/~wgropp

Overview

e How do supercomputers and HPC
simulations handle large data?

¢ Large here is between 1TB and 1PB per
data set
e How can applications adapt to the high
latency and modest bandwidth of
individual disks?

¢ Cooperative 10

e What can you do when you need more
performance for working with your

y data?

2 PARALLEL@ILLINOIS

The Message-Passing
Interface

—_
x —
()
~

e MPI is an ad hoc standard
developed by a broad community

¢ 1992: MPI-1, includes point to point
(send/recv) and collective
communication

¢ 1994: MPI-2, includes parallel 1/0,
remote memory access, explicit
thread interface

¢ 2012: MPI-3, updates remote
memory access, nonblocking
collectives, enhaBnced tools if}:‘ﬂfﬁﬁe LLINols

MPI’'s Success

e MPI is widely used
¢ Applications, software libraries, tools

e A low-level interface; many applications
written in terms of libraries that use MPI

e Success due to many factors, but includes:

¢ Programmer aware of and able to manage memory
motion

¢ Nonblocking operations permit latency hiding

¢ Designed to support libraries and tools

¢ Designed to work with node programming languages
(e.g., threads)

e How does MPI related to big data problems...?

. PARALLEL@ILLINOIS

MPI is about Performance

Collaborative Filtering (Weak scaling, 250 M edges/node)

-0—-Native Combblas —e=Graphlab —4&=Socialite =-E=Giraph
__ 10000
S
c x — T
9 1000 ——
3 ./ Factor of
E 100 ,—
© o
£ 104 ¢—o——
g
o 1
ig 1 2 4 8 16 32 64

Number of nodes

Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets
“ Nadathur Satisht, Narayanan Sundaram®, Md. Mostofa Ali Patwaryt, Jiwon Seo*, Jongsoo
Parkt, M. Amber Hassaan#,
1

T3l Shubho Senguptat, Zhaoming Yin§, and Prgdeep Dubeyt PARA'.I.EL@ll.“NOlS

Important Components of
MPI

I

1867

Point to point message passing
¢ MPI_Send, MPI_Recv

Nonblocking operations

¢ MPI_Isend, MPI_Irecv
Process groups

¢ MPI_Comm_split_with_info

Datatypes to describe arbitrary layouts of
memory in a space-efficient fashion
¢ MPI_Type_vector, MPI_Type_create_struct

Remote memory access and read-modify-write
operations
¢ MPI_Get_accumulate, MPI_Compare_and_swap

6 PARALLEL@ILLINOIS

Latest MPI 3.0 Standard

e Available in book form
from
amazon.com
http://
www.amazon.com/dp/
BOO2TM5BQK/

e Official version
available from
www.mpi-forum.org/
docs

; PARALLEL@ILLINOIS

New Tutorial Books on MPI

ENGINEERING

PUTATION

Using MPI Using Advanced MPI

Portable Parallel Programming Modern Features of the

with the Message-Passing Interface Message-Passing Interface

third edition

William Gropp

Torsten Hoefler

William Gropp

Ewing Lusk Rajeev Thakur

Anthony Skjellum Ewing Lusk

Basic MPI Advanced MPI, including

PI-3
PARALLEL@ILLINOIS

Blue Waters Computing System

EETT BT A T T T

S -7 T T T —— s EETT BT O T T T S

Tiscieidgmn

1 TB/sec

120+ Gb/se

DOODODODO

DOODODODO

Spectra Logic: 300 PBs So et~26 PBs

5 PARALLEL@ILLINOIS

Parallel I/O in MPI

e Why do I/O in MPI?
¢ Why not just POSIX?

e Parallel performance
e Single file (instead of one file / process)

e MPI has replacement functions for POSIX
I/0
¢ Provides migration path

e Multiple styles of I/O can all be expressed
in MPI

][¢ Including some that cannot be expressed
without MPI 0 PARALLEL@ILLINOIS

Non-Parallel I/0

o

e Non-parallel

e Performance worse than sequential

e Legacy from before application was parallelized
][e Either MPI or not

y PARALLEL@ILLINOIS

Independent Parallel I/0

e Fach process writes to a separate file

e o
I s

 Pro: parallelism

« Con: lots of small files to manage

o
—

* Legacy from before MPI

« MPI or not

12

Y

A

PARALLEL@ILLINOIS

Cooperative Parallel I/0

e Parallelism
e Can only be expressed in MPI

J§ « Natural once you get used to it
13 PARALLEL@ILLINOIS

Why MPI is a Good Setting
for Parallel I/0

e Writing is like sending and reading is
like receiving.

e Any parallel I/O system will need:
¢ collective operations

¢ user-defined datatypes to describe both
memory and file layout

¢ communicators to separate application-level
message passing from I/O-related message
passing

¢ non-blocking operations
@ ° L.e. lots of MPI-like machinery

o PARALLEL@ILLINOIS

What does Parallel I/0O Mean?

o At the program level:

¢ Concurrent reads or writes from
multiple processes to a common file

o At the system level:

¢ A parallel file system and hardware
that support such concurrent access

5 PARALLEL@ILLINOIS

Independent I/O with
MPI-IO

6 PARALLEL@ILLINOIS

Writing to a File

Use MPI File write oOr
MPI File write at

Use MPI_MODE WRONLY Or MPI_MODE RDWR
as the flags to MPI _File open

If the file doesn’t exist previously, the flag
MPI_MODE CREATE must also be passed to
MPI File open

We can pass multiple flags by using
bitwise-or '|" in C, or addition '+" in
Fortran

17 PARALLEL@ILLINOIS

Ways to Access a Shared File

MPI File seek

MPI File read

MPI File write
MPI File read at

MP I_Fi le_wri te at

MPI_Fi le_read_shared
MPI_Fi 1e_wri te_shared

18

>

like Unix I/O

combine seek and I/0O
for thread safety

} use shared file pointer

PARALLEL@ILLINOIS

Using Explicit Offsets

1867

#include “mpi.h”
MPI Status status;
MPI File fh;

MPI Offset offset;

MPI File open(MPI COMM WORLD, “/pfs/datafile”,
MPI MODE RDONLY, MPI INFO NULL, &fh)

nints FILESIZE / (nprocs*INTSIZE),

offset = rank * nints * INTSIZE;

MPI File read at(fh, offset, buf, nints, MPI INT,

&status) ;
MPI Get count(&status, MPI INT, &count);
Printf (“process %d read %d ints\n”, rank, count);

MPI File close(&fh);

19 PARALLEL@ILLINOIS

Why Use Independent I/0O?

e Sometimes the synchronization of
collective calls is not natural

e Sometimes the overhead of
collective calls outweighs their
benefits

¢ Example: very small I/O during
header reads

20 PARALLEL@ILLINOIS

Noncontiguous I/O in File

e Each process describes the part of the
file that it is responsible for
¢ This is the “file view”
¢ Described in MPI with an offset (useful for

headers) and an MPI_Datatype

e Only the part of the file described by the
file view is visible to the process; reads
and writes access these locations

e This provides an efficient way to perform
noncontiguous accesses

1867

21 PARALLEL@ILLINOIS

Noncontiguous Accesses

Common in parallel applications
Example: distributed arrays stored in files

A big advantage of MPI I/O over Unix I/O is
the ability to specify noncontiguous accesses
in memory and file within a single function call
by using derived datatypes

Allows implementation to optimize the access

Collective I/O combined with noncontiguous
accesses yields the highest performance

22 PARALLEL@ILLINOIS

File Views

e Specified by a triplet (displacement,
etype, and filetype) passed to
MPI File set view
e displacement = number of bytes to be
skipped from the start of the file
¢ e.g., to skip a file header

e etype = basic unit of data access (can be
any basic or derived datatype)

o filetype = specifies which portion of the
file is visible to the process

1867

23 PARALLEL@ILLINOIS

A Simple Noncontiguous File
View Example

B etype = MPLINT

- filetype = two MPI_INTs followed by
a gap of four MPI_INTs
head of file FILE
V T T
< - >< >< >
displacement filetype filetype and so on...

24 PARALLEL@ILLINOIS

Noncontiguous File View

Code
MPI Aint 1lb, extent;

MPI Datatype etype, filetype, contig;
MPI Offset disp;

MPI Type contiguous (2, MPI_ INT, &contigq);

l1b = 0; extent = 6 * sizeof(int);

MPI Type create resized(contig, 1lb, extent, &filetype);
MPI Type commit (&filetype)

disp = 5 * sizeof(int);, etype = MPI INT;

MPI File open(MPI COMM WORLD, "/pfs/datafile",
MPI MODE CREATE | MPI MODE RDWR, MPI INFO NULL, &fh);
MPI File set view(fh, disp, etype, filetype, "native",
MPI INFO NULL) ;
MPI File write(fh, buf, 1000, MPI INT, MPI STATUS IGNORE) ;

I

s PARALLEL@ILLINOIS

Collective I/O and MPI

e A critical optimization in parallel I/O

e All processes (in the communicator) must call the
collective I/0 function

e Allows communication of “big picture” to file system
¢ Framework for I/O optimizations at the MPI-IO layer

e Basic idea: build large blocks, so that reads/writes in I/O
system will be large

¢ Requests from different processes may be merged together

¢ Particularly effective when the accesses of different
processes are noncontiguous and interleaved

[
— >
|-
L
—
L

iy PARALLEL@]LLINOIS

Small individual
requests

— ==

Large collective
access

Collective I/O Functions

- MPI File write at all, etc.
¢ all indicates that all processes in the group

specified by the communicator passed to
MPI_File open Will call this function

¢ at indicates that the position in the file is
specified as part of the call; this provides
thread-safety and clearer code than using a
separate “seek” call
e Each process specifies only its own
access information — the argument list
is the same as for the non-collective

functions
- PARALLEL@ILLINOIS

The Other Collective I/0 Calls

* MPI File seek
 MPI File read all - like Unix 1/0
* MPI File write all J
) MPI_File_read_at_all combine seek and I/0O
- MPI File write at all for thread safety

* MPI File read ordered

o MPI_File_wri te_ordere

J use shared file pointer

2 PARALLEL@ILLINOIS

Using the Right MPI-IO
Function

Any application as a particular “I/O access
pattern” based on its I/O needs

The same access pattern can be presented to

the I/O system in different ways depending on
what I/O functions are used and how

We classify the different ways of expressing I/
O access patterns in MPI-IO into four levels:
level O - level 3

We demonstrate how the user’s choice of level
affects performance

29 PARALLEL@ILLINOIS

Example: Distributed Array
AcCcess

Large array
distributed
among 16
processes

PO

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

Each square represents
a subarray in the memory
of a single process

Access Pattern in the file
| po| P1| P2| P3| PO| P1| P2]

| P4| P5| Ps| P7| P4| P5| P6 |

| ps| P9 | p10| P11| P8 | P9 |P10 |

|p12 | P13 P14 | P15 | P12 | P13 | P14

30

PARALLEL@ILLINOIS

Level-0 Access

1867

e Each process makes one independent read

request for each row in the local array (as in
Unix)

MPI File open(..., file, ..., &fh);
for (i=0; i<n local rows; i++) {

MPI File seek(fh, ...);

MPI File read(fh, &(A[i][O0]), ...):

}
MPI File close(&fh);

31 PARALLEL@ILLINOIS

Level-1 Access

e Similar to level 0, but each process uses collective
I/O functions

MPI File open(MPI COMM WORLD, file, ...,
&fh) ;

for (i=0; i<n local rows; i++) {
MPI File seek(fh, ...);
MPI File read all(fh, &(A[i][O0]), ...):

}
MPI File close(&fh);

- PARALLEL@ILLINOIS

Level-2 Access

e Each process creates a derived datatype to
describe the noncontiguous access pattern, defines
a file view, and calls independent I/O functions

MPI Type create subarray(...,
&subarray, ...);

MPI Type commit (&subarray);

MPI File open(..., file, ..., &fh);
MPI File set view(fh, ..., subarray, ...);
MPI File read(fh, A, ...);

MPI File close(&fh);

5 PARALLEL@ILLINOIS

Level-3 Access

e Similar to level 2, except that each process uses
collective I/0O functions

MPI Type create subarray(...,
&subarray, ...);

MPI Type commit (&subarray)
MPI File open(MPI COMM WORLD, file,...,

&fh) ;
MPI File set view(fh, ..., subarray, ...);
MPI File read all(fh, A, ...);

MPI File close(&fh);

s PARALLEL@ILLINOIS

The Four Levels of Access

File Space

>

.............

‘‘‘‘‘‘‘

........

“““““““ I < Level 1

gt

<— Level 3

>

2 3 Processes
35 PARALLEL@ILLINOIS

Collective I/0O Provides Far Higher Performance

« Write performance for oouu . .
a 3D array output in Level 2«
canonical order on 2 3000 roveld e
supercomputers,
using 256 processes
(1 process / core)

« Level O (independent
I/O from each
process for each
contiguous block of
memory) too slow on
BG/Q

- Total BW is still low 0

because relatively

few nodes in use (16

for Blue Waters =

~180MB/sec/node)

2500

2000

1500

Bandwidth (MB/s)

1000

500 r

Blue Gene/Q Blue Waters

36 PARALLEL@ILLINOIS

Summary

1867

e Key issues that I/O must address

¢ High latency of devices
e Nonblocking I/O; cooperative I/O

¢ I/0 inefficient if transfers are not both large
and aligned with device blocks
e Collective I/0O; datatypes and file views

¢ Data consistency to other users

e POSIX is far too strong (primary reason parallel
file systems have reliability problems)

e "Big Data” file systems are weak (eventual
consistency; tolerate differences)

e MPI is precise and provides high performance;
consistency points guided by users

37 PARALLEL@ILLINOIS

