
Using MPI I/O for Big Data 

William Gropp 
www.cs.illinois.edu/~wgropp 



2 

Overview 

•  How do supercomputers and HPC 
simulations handle large data? 
♦  Large here is between 1TB and 1PB per 

data set 
•  How can applications adapt to the high 

latency and modest bandwidth of 
individual disks? 
♦ Cooperative IO 

•  What can you do when you need more 
performance for working with your 
data? 



3 

The Message-Passing 
Interface 

• MPI is an ad hoc standard 
developed by a broad community 
♦ 1992: MPI-1, includes point to point 

(send/recv) and collective 
communication 

♦ 1994: MPI-2, includes parallel I/O, 
remote memory access, explicit 
thread interface 

♦ 2012: MPI-3, updates remote 
memory access, nonblocking 
collectives, enhanced tools interface  



4 

MPI’s Success 

•  MPI is widely used 
♦  Applications, software libraries, tools 

•  A low-level interface; many applications 
written in terms of libraries that use MPI 

•  Success due to many factors, but includes: 
♦  Programmer aware of and able to manage memory 

motion 
♦  Nonblocking operations permit latency hiding 
♦  Designed to support libraries and tools 
♦  Designed to work with node programming languages 

(e.g., threads) 
•  How does MPI related to big data problems…? 



5 

MPI is about Performance 

and is close to native performance (geometric mean of 1.1-1.2X
for pagerank, BFS and collaborative filtering, and 2.5X for triangle
counting). (3) Giraph, on the other hand, is 2-3 orders of magnitude
slower than native code (4) CombBLAS and GraphLab perform
well on average. CombBLAS is very good for all algorithms except
for Triangle Counting, where it ran out of memory for real-world
inputs while computing the A2 matrix product. This is an express-
ibility problem in CombBLAS. GraphLab is 3-9X off from native
code, but performs reasonably consistently across algorithms. (5)
SociaLite performance is typically comparable to GraphLab (some-
times slightly better and sometimes slightly worse).

Finally, note that the trends on the synthetic dataset are in line
with real-world data, showing that our synthetic generators are ef-
fective in modeling real-world data.

5.3 Multi node results
We first show our scaling results of our frameworks on multiple

nodes. A major reason for using multiple nodes to process graph
data is to store the data in memory across the nodes. Hence a com-
mon use case is weak-scaling, where the data per node is kept con-
stant (and hence total data set size increases with number of nodes).
If we obtain perfect performance scaling, then the runtime should
be constant as we increase node count and data set size. In this
study, we include CombBLAS, GraphLab, SociaLite and Giraph
frameworks. Galois is currently only a single node framework and
we hence do not include results here.

Figures 4(a), 4(b), 4(c) and 4(d) show the results of multi node
runs on synthetically generated data sets for our benchmarks. The
data sizes are chosen so that all frameworks could complete without
running out of memory. Figure 5 shows the corresponding perfor-
mance results for larger real-world graphs. We run each algorithm
using one large dataset – we use the Twitter dataset [20] for Pager-
ank, BFS and Triangle Counting and the Yahoo Music KDDCup
dataset 2011 dataset for Collaborative Filtering [7].

Algorithm CombBLAS GraphLab SociaLite Giraph
PageRank 2.5 12.1 7.9 74.4

BFS 7.1 29.5 18.9 494.3
Coll. Filtering 3.5 7.1 7.0 87.9

Triangle Count. 13.1 3.6 1.5 54.4

Table 6: Summary of performance differences for multi node bench-
marks on different frameworks. Each entry is a slowdown factor from
native code, hence lower numbers indicate better performance.

As a convenient summary of performance, Table 6 shows the
geometric mean of the performance differences between our frame-
works combining real-world and synthetic datasets at different scales.
The table shows performance slowdowns of different frameworks
for specific algorithms compared to the native code for that algo-
rithm – hence lower numbers are better.

We note the following trends in our multi-node results. (1) There
is wide variability in our multi node results; as an example, na-
tive code performs anywhere between 2X to more than 560X better
than other frameworks on multi node runs (still up to 30X discount-
ing Giraph runtimes). (2) Giraph performs worse by far than other
frameworks and is frequently 2-3 orders magnitude off from na-
tive performance. (3) CombBLAS is competitive for Pagerank (ge-
omean of 2.5X native performance), BFS (7.1X off native) and Col-
laborative Filtering (3.5X off native). However, it performs poorly
on Triangle Counting due to extra computations performed as a re-
sult of framework expressibility issues. CombBLAS also runs out
of memory for the Twitter data set and hence this data point is not
plotted. (4) GraphLab performs well for Triangle Counting, due
to data structure optimizations performed for this case, namely the

1

10

100

at
io
n
�(s
ec
on

ds
)

Pagerank�(Weak�scaling,�128M�edges/node)

Native Combblas Graphlab Socialite Giraph

0.1

1

1 2 4 8 16 32 64

Ti
m
e�
pe

r�
it
er
a

Number�of�nodes
(a) PageRank

10

100

1000

ti
m
e�
(s
ec
on

ds
)

BFS�(Weak�scaling,�128M�undirected�edges/node)

Native Combblas Graphlab Socialite Giraph

0

1

1 2 4 8 16 32 64

O
ve
ra
ll�

Number�of�nodes
(b) Breadth-First Search

100

1000

10000

at
io
n
�(s
ec
on

ds
)

Collaborative�Filtering�(Weak�scaling,�250�M�edges/node)

Native Combblas Graphlab Socialite Giraph

1

10

1 2 4 8 16 32 64

Ti
m
e�
pe

r�
it
er
a

Number�of�nodes
(c) Collaborative Filtering

10

100

1000

m
e�
(s
ec
on

ds
)

Triangle�Counting�(Weak�scaling,�32M�edges/node)

Native Combblas Graphlab Socialite Giraph

0

1
1 2 4 8 16 32 64O

ve
ra
ll�
Ti
m

Number�of�nodes
(d) Triangle Counting

Figure 4: Performance results for different algorithms on large scale
synthetic graphs. The y-axis represents runtime in log-scale. We per-
form weak-scaling, where the amount of graph data per node is kept
constant, (a) 128 M edges/node for pagerank, (b) 128 M edges/node for
BFS, (c) 256M ratings/node for SGD, and (d) 32M edges/node for tri-
angle counting. Horizontal lines represent perfect scaling.

986

Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets  
Nadathur Satish†, Narayanan Sundaram†, Md. Mostofa Ali Patwary†, Jiwon Seo⋆, Jongsoo 
Park†, M. Amber Hassaan‡, 
Shubho Sengupta†, Zhaoming Yin§, and Pradeep Dubey†  
 

Factor of 
100! 



6 

Important Components of 
MPI 

•  Point to point message passing 
♦  MPI_Send, MPI_Recv 

•  Nonblocking operations 
♦  MPI_Isend, MPI_Irecv 

•  Process groups 
♦  MPI_Comm_split_with_info 

•  Datatypes to describe arbitrary layouts of 
memory in a space-efficient fashion 
♦  MPI_Type_vector, MPI_Type_create_struct 

•  Remote memory access and read-modify-write 
operations 
♦  MPI_Get_accumulate, MPI_Compare_and_swap 



7 

Latest MPI 3.0 Standard 

•  Available in book form 
from 
amazon.com
http://
www.amazon.com/dp/
B002TM5BQK/ 

•  Official version 
available from 
www.mpi-forum.org/
docs  



8 

New Tutorial Books on MPI 

Basic MPI Advanced MPI, including 

MPI-3 



9 

Blue Waters Computing System 

Sonexion: 26 PBs 

>1 TB/sec 

100 GB/sec 

10/40/100 Gb 
Ethernet Switch 

Spectra Logic: 300 PBs 

120+ Gb/sec 

WAN 

IB Switch 



10 

Parallel I/O in MPI 

•  Why do I/O in MPI? 
♦ Why not just POSIX? 

•  Parallel performance 
•  Single file (instead of one file / process) 

•  MPI has replacement functions for POSIX 
I/O 
♦ Provides migration path 

•  Multiple styles of I/O can all be expressed 
in MPI 
♦  Including some that cannot be expressed 

without MPI 



11 

Non-Parallel I/O 

•  Non-parallel 
•  Performance worse than sequential 
•  Legacy from before application was parallelized 
•  Either MPI or not 



12 

Independent Parallel I/O 

•  Each process writes to a separate file 

•  Pro:  parallelism 
•  Con:  lots of small files to manage 
•  Legacy from before MPI 
•  MPI or not 



13 

Cooperative Parallel I/O 

•  Parallelism 
•  Can only be expressed in MPI 
•  Natural once you get used to it 



14 

Why MPI is a Good Setting 
for Parallel I/O 

•  Writing is like sending and reading is 
like receiving. 

•  Any parallel I/O system will need: 
♦  collective operations 
♦ user-defined datatypes to describe both 

memory and file layout 
♦  communicators to separate application-level 

message passing from I/O-related message 
passing 

♦ non-blocking operations 
•  I.e., lots of MPI-like machinery 



15 

What does Parallel I/O Mean? 

• At the program level: 
♦ Concurrent reads or writes from 

multiple processes to a common file 
• At the system level: 

♦ A parallel file system and hardware 
that support such concurrent access 

15 



16 

Independent I/O with 
MPI-IO 

16 



17 

Writing to a File 

•  Use MPI_File_write or 
MPI_File_write_at 

•  Use MPI_MODE_WRONLY or MPI_MODE_RDWR 
as the flags to MPI_File_open 

•  If the file doesn’t exist previously, the flag 
MPI_MODE_CREATE must also be passed to 
MPI_File_open 

•  We can pass multiple flags by using 
bitwise-or ‘|’ in C, or addition ‘+” in 
Fortran 



18 

Ways to Access a Shared File 
•  MPI_File_seek 
•  MPI_File_read 
•  MPI_File_write 
•  MPI_File_read_at 
•  MPI_File_write_at 
•  MPI_File_read_shared 
•  MPI_File_write_shared 

18 

combine seek and I/O 
for thread safety 

use shared file pointer 

like Unix I/O 



19 

Using Explicit Offsets 

19 

#include “mpi.h” 
MPI_Status status; 
MPI_File fh; 
MPI_Offset offset; 
   
MPI_File_open(MPI_COMM_WORLD, “/pfs/datafile”, 
            MPI_MODE_RDONLY, MPI_INFO_NULL, &fh) 
nints = FILESIZE / (nprocs*INTSIZE); 
offset = rank * nints * INTSIZE; 
MPI_File_read_at(fh, offset, buf, nints, MPI_INT,  
                 &status); 
MPI_Get_count(&status, MPI_INT, &count); 
Printf(“process %d read %d ints\n”, rank, count); 
 
MPI_File_close(&fh); 
 



20 

Why Use Independent I/O? 

• Sometimes the synchronization of 
collective calls is not natural 

• Sometimes the overhead of 
collective calls outweighs their 
benefits 
♦ Example: very small I/O during 

header reads  



21 

Noncontiguous I/O in File 

•  Each process describes the part of the 
file that it is responsible for 
♦ This is the “file view” 
♦ Described in MPI with an offset (useful for 

headers) and an MPI_Datatype 
•  Only the part of the file described by the 

file view is visible to the process; reads 
and writes access these locations 

•  This provides an efficient way to perform 
noncontiguous accesses 

21 



22 

Noncontiguous Accesses 

•  Common in parallel applications 
•  Example: distributed arrays stored in files 
•  A big advantage of MPI I/O over Unix I/O is 

the ability to specify noncontiguous accesses 
in memory and file within a single function call 
by using derived datatypes 

•  Allows implementation to optimize the access 
•  Collective I/O combined with noncontiguous 

accesses yields the highest performance 



23 

File Views 

•  Specified by a triplet (displacement, 
etype, and filetype) passed to 
MPI_File_set_view 

•  displacement = number of bytes to be 
skipped from the start of the file 
♦  e.g., to skip a file header 

•  etype = basic unit of data access (can be 
any basic or derived datatype) 

•  filetype = specifies which portion of the 
file is visible to the process 

23 



24 

A Simple Noncontiguous File 
View Example 

24 

etype = MPI_INT 

filetype = two MPI_INTs followed by 
                 a gap of four MPI_INTs 

displacement filetype filetype and so on... 

FILE 
head of file 



25 

Noncontiguous File View 
Code 

25 

MPI_Aint lb, extent; 
MPI_Datatype etype, filetype, contig; 
MPI_Offset disp; 
 
MPI_Type_contiguous(2, MPI_INT, &contig); 
lb = 0; extent = 6 * sizeof(int); 
MPI_Type_create_resized(contig, lb, extent, &filetype); 
MPI_Type_commit(&filetype); 
disp = 5 * sizeof(int); etype = MPI_INT; 
 
MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",  
     MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh); 
MPI_File_set_view(fh, disp, etype, filetype, "native",  
                  MPI_INFO_NULL); 
MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE); 
 



26 

Collective I/O and MPI 

•  A critical optimization in parallel I/O 
•  All processes (in the communicator) must call the 

collective I/O function 
•  Allows communication of “big picture” to file system 

♦  Framework for I/O optimizations at the MPI-IO layer  
•  Basic idea: build large blocks, so that reads/writes in I/O 

system will be large 
♦  Requests from different processes may be merged together 
♦  Particularly effective when the accesses of different 

processes are noncontiguous and interleaved 

26 

Small individual 
requests 

Large collective 
access 



27 

Collective I/O Functions 

•  MPI_File_write_at_all, etc. 
♦ _all indicates that all processes in the group 

specified by the communicator passed to 
MPI_File_open will call this function 

♦ _at indicates that the position in the file is 
specified as part of the call; this provides 
thread-safety and clearer code than using a 
separate “seek” call 

•  Each process specifies only its own 
access information — the argument list 
is the same as for the non-collective 
functions 

27 



28 

The Other Collective I/O Calls 
•  MPI_File_seek 
•  MPI_File_read_all 
•  MPI_File_write_all 
•  MPI_File_read_at_all 
•  MPI_File_write_at_all 
•  MPI_File_read_ordered 
•  MPI_File_write_ordered 

28 

combine seek and I/O 
for thread safety 

use shared file pointer 

like Unix I/O 



29 

Using the Right MPI-IO 
Function 

•  Any application as a particular “I/O access 
pattern” based on its I/O needs 

•  The same access pattern can be presented to 
the I/O system in different ways depending on 
what I/O functions are used and how 

•  We classify the different ways of expressing I/
O access patterns in MPI-IO into four levels: 
level 0 – level 3  

•  We demonstrate how the user’s choice of level 
affects performance 

29 



30 

Example: Distributed Array 
Access 

30 

P0 

P12 

P4 

P8 

P2 

P14 

P6 

P10 

P1 

P13 

P5 

P9 

P3 

P15 

P7 

P11 

P0 P1 P2 P3 P0 P1 P2 

P4 P5 P6 P7 P4 P5 P6 

P8 P9 P8 P9 

Large array  
distributed 
among 16  
processes 

Access Pattern in the file 

Each square represents  
a subarray in the memory 
of a single process 

P10 P11 P10 

P15 P13 P12 P12 P13 P14 P14 



31 

Level-0 Access 

•  Each process makes one independent read 
request for each row in the local array (as in 
Unix) 

 MPI_File_open(..., file, ..., &fh); 
 for (i=0; i<n_local_rows; i++) { 
  MPI_File_seek(fh, ...); 
  MPI_File_read(fh, &(A[i][0]), ...); 
 } 
 MPI_File_close(&fh); 

31 



32 

Level-1 Access 

•  Similar to level 0, but each process uses collective 
I/O functions 

    MPI_File_open(MPI_COMM_WORLD, file, ..., 
              &fh); 

 for (i=0; i<n_local_rows; i++) { 
  MPI_File_seek(fh, ...); 
  MPI_File_read_all(fh, &(A[i][0]), ...); 
 } 
 MPI_File_close(&fh); 

32 



33 

Level-2 Access 

•  Each process creates a derived datatype to 
describe the noncontiguous access pattern, defines 
a file view, and calls independent I/O functions 

  MPI_Type_create_subarray(..., 
&subarray, ...); 

 MPI_Type_commit(&subarray); 
 MPI_File_open(..., file, ..., &fh); 
 MPI_File_set_view(fh, ..., subarray, ...); 
 MPI_File_read(fh, A, ...); 
 MPI_File_close(&fh); 

33 



34 

Level-3 Access 

•  Similar to level 2, except that each process uses 
collective I/O functions 

  MPI_Type_create_subarray(..., 
&subarray,  ...); 

 MPI_Type_commit(&subarray); 
 MPI_File_open(MPI_COMM_WORLD, file,..., 
&fh); 

 MPI_File_set_view(fh, ..., subarray, ...); 
 MPI_File_read_all(fh, A, ...); 
 MPI_File_close(&fh); 

34 



35 

The Four Levels of Access 

35 

Fi
le

 S
pa

ce
 

Processes 3 2 1 0 

Level 0 

Level 1 

Level 2 

Level 3 



36 

Collective I/O Provides Far Higher Performance 

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Blue Gene/Q Blue Waters

Ba
nd

w
id

th
 (M

B/
s)

Level 0
Level 2
Level 3

•  Write performance for 
a 3D array output in 
canonical order on 2 
supercomputers, 
using 256 processes 
(1 process / core) 

•  Level 0 (independent 
I/O from each 
process for each 
contiguous block of 
memory) too slow on 
BG/Q 

•  Total BW is still low 
because relatively 
few nodes in use (16 
for Blue Waters = 
~180MB/sec/node) 



37 

Summary 

•  Key issues that I/O must address 
♦ High latency of devices 

• Nonblocking I/O; cooperative I/O 
♦  I/O inefficient if transfers are not both large 

and aligned with device blocks 
•  Collective I/O; datatypes and file views 

♦ Data consistency to other users 
•  POSIX is far too strong (primary reason parallel 

file systems have reliability problems) 
•  “Big Data” file systems are weak (eventual 

consistency; tolerate differences) 
• MPI is precise and provides high performance; 

consistency points guided by users 


