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Messages 

• Current I/O performance is poor 
♦ Even relative to what current systems 

can achieve 
♦ Part of the problem is the I/O 

interface semantics 
• Big data is more than just I/O 

♦ HPC has relevant insights 
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Just How Bad Is Current I/O 
Performance? 

•  Much of the data (and some slides) taken from 
“A Multiplatform Study of I/O Behavior on 
Petascale Supercomputers,” Huong Luu, 
Marianne Winslett, William Gropp, Robert 
Ross, Philip Carns, Kevin Harms, Prabhat, 
Suren Byna, and Yushu Yao, presented at 
HPDC’15. 
♦  This paper has lots more data – consider this 

presentation a sampling 
•  Thanks to Luu, Behzad, and the Blue Waters 

staff and project for Blue Waters results 
♦  Analysis part of PAID program at Blue Waters  
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I/O Logs Captured By Darshan, A 
Lightweight I/O Characterization Tool  

•  Instruments I/O functions at 
multiple levels 

• Reports key I/O characteristics 
• Does not capture text I/O 

functions 
• Low overhead à Automatically 

deployed on multiple platforms. 
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Caveats on Darshan Data 

•  Users can opt out 
♦ Not all applications recorded; typically about 
½ on DOE systems 

•  Data saved at MPI_Finalize 
♦ Applications that don’t call MPI_Finalize, 

e.g., run until time is expired and then 
restart from the last checkpoint, aren’t 
covered 

•  About ½ of Blue Waters Darshan data 
not included in analysis 
♦ Expect to be fixed soon 
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I/O log dataset: 4 platforms, >1M jobs, 
almost 7 years combined 

 Intrepid Mira Edison Blue 
Waters 

Architecture BG/P BG/Q Cray XC30 Cray XE6/
XK7 

Peak Flops 0.557 PF 10 PF 2.57 PF 13.34 PF 
Cores 160K 768K 130K 792K+59K 

smx 
Total Storage 6 PB 24 PB 7.56 PB 26.4 PB 
Peak I/O 
Throughput 

88 GB/s 240 GB/s 168 GB/s 963 GB/s 

File System GPFS GPFS Lustre Lustre 
# of jobs  239K 137K 703K 300K 
Time period 4 years 18 months 9 months 6 months 
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Very Low I/O Throughput Is The Norm 
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System peak - 240 GB/s
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Most Jobs Read/Write Little 
Data (Blue Waters data) 



10 

I/O Thruput vs Relative Peak 
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~50% of apps 
never transfer 
> 1GB 

~20% of apps 
use only text I/O 



12 

I/O Time Usage Is Dominated By A 
Small Number Of Jobs/Apps 
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Improving the performance of the top 
15 apps can save a lot of I/O time 

Platform I/O 
time percent 

Percent of platform I/O time 
saved if min thruput = 1 GB/s  

Mira 83% 32% 
Intrepid 73% 31% 
Edison 70% 60% 
Blue 
Waters 

75% 63% 
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Top 15 apps with largest I/O 
time (Blue Waters) 

• Consumed 1500 hours of I/O time 
(75% total system I/O time) 
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POSIX I/O is far more widely used than 
parallel I/O libraries. 
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What Are Some of the 
Problems? 

•  POSIX I/O has a strong consistency model 
♦  Hard to cache effectively 
♦  Applications need to transfer block-aligned and sized 

data to achieve performance 
•  Files as I/O objects add metadata “choke points” 

♦  Serialize operations, even with “independent” files 

•  Burst buffers will not fix these problems – must 
change the semantics of the operations 

•  “Big Data” file systems have very different 
consistency models and meta data structures, 
designed for their application needs 
♦  Why doesn’t HPC? 

•  There have been some efforts, such as PVFS, but the 
requirement for POSIX has held up progress 
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Big Data is More Than I/O 

•  One example is distributed, out-of-core 
graph processing 
♦ Constantly growing graph sizes with large 

memory footprints 
♦ Current distributed graph processing 

frameworks assume graphs fit in memory 
•  Including all intermediate states 
•  “Easy” but expensive fix is very large memory nodes 

♦ Can we use out-of-core techniques? 
•  This is work of Hassan Eslami, conducted 

during a summer internship at Facebook 
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Solution 

• We need a strategy to 
automatically and intelligently 
decide which data should be in-
memory or out-of-core.  

• This is done by: 
♦ Adaptive control of in-memory data 
♦ Congestion control of incoming 

messages 
♦ Capacity control of outgoing 

messages 
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Adaptive Control of In-memory 
Data 

• Data usage > High: offload data to 
disk until usage below Mid 

• Data usage < Low: lazily load data of 
latest offload from disk 

Low Mid High 
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Congestion Control of Incoming 
Messages 
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Congestion Control of Incoming 
Messages 
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Capacity Control of Outgoing 
Messages 

• Keeps a count of outgoing on-the-
fly messages per worker pair 

• Limits in-transit messages per 
each worker pair in a two phase 
approach 
1.  count > MAX-IN-TRANSIT: cache the 

message 
2.  size(cache) > MAX-CACHE-SIZE: 

stop computation  
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Result 
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Observations 

• Dealing with large graphs requires 
fast messaging 
♦ Issues such as memory management 

of “eager” data, flow control, 
nonblocking operations are important 

♦ Latency hiding in I/O also important 
• Common programming model is 

BSP 
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Message 1 

• Current I/O performance is poor 
♦ Metadata operations often a significant 

source of poor performance 
♦ Related to mismatch between system 

and user expectations 
• CS Challenge: Better I/O consistency and 

programming models 
• Math Challenge: Match algorithms to 

realities of (changing) hardware; need 
aggregates, realistic model of data transfer 
costs 
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Message 2 

• Big data is more than just I/O 
♦ And more than just operations on 

nearly independent data, for 
example… 

♦ Need to handle large graphs 
• CS Challenge: Low latency, high 

bandwidth, latency hiding programming 
and implementation, including multiple 
levels of memory hierarchy 

• Math Challenge: Match algorithms to 
problems; exploit years of effective 
sparse matrix work 
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Thanks! 

•  Especially Huong Luu, Babak Behzad, Hassan 
Eslami 

•  Funding from: 
♦  NSF 
♦  Blue Waters 

•  Partners at ANL, LBNL; DOE funding 
•  Internship support for Eslami from Facebook 


