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MPI and Supercomputing 
•  The Message Passing Interface (MPI) has been 

amazingly successful 
♦  First released in 1992, it is still the dominant 

programming system used to program the world’s fastest 
computers 

♦  The most recent version, MPI 3.0, released in September 
2012, contains many features to support systems with 
>100K processes and state-of-the-art networks 

•  Supercomputing (and computing) is reaching a 
critical point as the end of Dennard scaling has 
forced major changes in processor architecture. 

•  This talk looks at the future of MPI from the point 
of view of Extreme scale systems 
♦  That technology will be used in single rack systems  
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Likely Exascale Architectures 

•  From “Abstract Machine Models and Proxy 
Architectures for Exascale Computing Rev 1.1,” J 
Ang et al 
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Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

Note: not fully 
cache coherent 
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More Details: Processor 

•  Memory bandwidths from 1200GB/s 
(core-L1cache) to 60GB/s (off-chip 
conventional DRAM) 

•  64-256 cores/chip; 2-64 threads/core; 
4-8 wide SIMD, 8-128 outstanding refs 
per core 

•  Atomic ops, including transactional 
memory 

•  Documents silent on memory latencies 
♦ Probably because numbers are uninspiring 
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More Details: Memory 

• Multilevel 
♦ DRAM on chip (64GB), off chip (2TB) 
♦ NVRAM (higher density – 16TB, but 

requires larger access units (≥1KB)) 
♦ Stacked memory 

• Compute near memory 
♦ “Extended memory semantics” 
♦ Full/empty bits; gather/scatter; 

stream compute; … 
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More Details: Network 

•  100-400 GB/s injection BW 
•  Topology anyone’s guess (SlimFly, 

perhaps?) 
•  250M message/s two-sided 
•  1000M messages/s one-sided 
•  Latency: 

♦ 0.5-1.4 usec two-sided nearest neighbor 
♦ 0.4-0.6 usec one-sided nearest neighbor 
♦ 3-5 usec cross machine 
♦ Note: about the same as current systems 
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Most Predict Heterogeneous 
Systems for both Ops and Memory 

 
CFD Vision 2030 Study: A Path To Revolutionary Computational Aerosciences 49 
 

between 16 to 32 exaFLOPS may be achievable by 2030. 
Note that there are many assumptions in this estimate, and 
many yet unsolved engineering problems must be overcome 
to maintain the targets in the ITRS roadmap. In addition, we 
have assumed lower clock rates in the stream and processor-
in-memory elements, reflecting a different optimization point 
for speed and energy use. 

It is important to note that these predictions are sensitive to a 
number of hard-to-forecast values. For example, energy and 
power dissipation problems could reduce the number of pro-
cessing units that can be assembled into a single system, re-
ducing total performance.5 Conversely, new 3D fabrication 
and packaging could increase the density of components, 
allowing even greater parallelism. The major conclusion that 
should be drawn from this table is that current trends will 
yield significantly faster systems than we have today, but not 
ones that are as fast as the past 20 years of development 
would suggest.  

Another important feature of an HPC system in this time 
frame we expect to see are even more levels of memory than 
we currently have. Current systems have up to three levels of 
cache, and then main memory. Systems with accelerators 
have additional memory attached to the accelerator. In 2030, 
main memory itself might be composed of different levels, 
with portions being very fast, but small, and other portions 
larger and slower. Combined with the concept of processing 
in memory, that is, having some computing capability em-
bedded within the memory subsystem, this will lead to an 
even more complex overall system. 

Programming a 2030 HPC system 
Software has a much longer lifespan than hardware, and as 
pointed out earlier, the expectation is that there will be only 
evolutionary changes to the programming model in the 2020-
2023 timeframe. For 2030, the likelihood that some major, 
revolutionary changes to the programming models will occur 
is higher because of the extra development time. It is im-
portant to point out that this is not a guarantee, as many pro-
gramming languages and models have shown a surprising 
level of sustainability. In addition, as we pointed out in the 
discussion on the validity of petascale projections, software 

advances are much tougher to predict than hardware advanc-
es. 

Future programming models will be driven by dealing with 
locality, whether they are new or extensions of existing pro-
gramming models. Programmers need to be able to express 
locality  and  relationships  between  data  abstractly.  NVIDIA’s  
CUDA programming language is an example of a newer 
programming model that forces programmers to deal directly 
and explicitly with locality. This illustrates the need for the 
expression of locality while also showcasing the need for 
ways to express this information about locality more abstract-
ly and portable. 

As discussed above, we pointed out that the memory system 
will probably become much more complex, both with the 
introduction of processing in memory (PIM) as well as with 
more levels of memory architectures. While some of this 
complexity will be hidden from the developers, a lot of it will 
not. The developers need to be able to express what compu-
ting should be done by the slower processing elements inside 
the memory subsystem, and what needs to be done by the 
fast scalar processor or the streaming elements. The pro-
cessing elements within the memory subsystem will have 
significantly higher bandwidth to memory. One of the easiest 
uses to imagine of this processing is to perform calculations 
for prefetching of data (gather), and scatter the results of cal-
culations back into the final locations in the memory subsys-
tem. Because of the processing power and bandwidth envi-
sioned in the memory subsystems, these can be significantly 
more complex than possible within the processors, which 
will be especially useful for software with complex memory 
access patterns, for example, unstructured CFD codes. 

We do not believe that there will ever be a programming 
model that completely hides the complexity of the underlying 
HPC system from the programmer while achieving the nec-
essary performance. Nevertheless, we do think that great 
advances can be made to allow the programmer better to 
express her or his intent and to provide guidance to the com-
piler, runtime system, operating system, and even the under-
lying hardware. This will require significant research and that 

Table 1.  Estimated Performance for Leadership-class Systems 

Year 
Feature 

size 
Derived 

parallelism 
Stream 

parallelism 
PIM paral-

lelism 

Clock 
rate 
GHz FMAs 

GFLOPS 
(Scalar) 

GFLOPS 
(Stream) 

GFLOPS 
(PIM) 

Processor 
per node 

Node 
(TFLOP) 

Nodes 
per 

system 
Total 

(PFLOPS) 
2012 22 16 512 0 2 2 128 1,024 0 2 1 10,000 23 

2020 12 54 1,721 0 2.8 4 1,210 4,819 0 2 6 20,000 241 

2023 8 122 3,873 512 3.1 4 3,026 12,006 1,587 4 17 20,000 1,330 

2030 4 486 15,489 1,024 4 8 31,104 61,956 8,192 16 101 20,000 32,401 

Feature size is the size of a logic gate in a semiconductor, in nanometers. Derived parallelism is the amount of concurrency, given processor cores with a 

constant number of components, on a semiconductor chip of fixed size. Stream and PIM parallelism are the number of specialized processor cores for 

stream and processor-in-memory processing, respectively. FMA is the number of floating-point multiply-add units available to each processor core. From 

these values, the performance in GigaFLOPS is computed for each processor and node, as well as the total peak performance of a leadership-scale system. 

Another estimate, from “CFD Vision 2030 Study: 
A Path to Revolutionary Computational 
Aerosciences,” Slotnick et al, 2014 
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What About a Homogeneous 
System? 

•  IBM BlueGene was the only 
homogenous* system at this scale, but 
… 
♦  “Both CORAL awards leverage the IBM 

Power Architecture, NVIDIA’s Volta GPU and 
Mellanox’s Interconnected technologies to 
advance key research initiatives …” 

•  * Try to use the very wide SIMD on 
BlueGenes.  Homogeneously 
heterogeneous 
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What This (might) Mean for 
MPI 

• Lots of innovation in the processor 
and the node 

• More complex memory hierarchy; 
no chip-wide cache coherence 

• Tightly integrated NIC 
• Execution model becoming more 

complex 
♦ Achieving performance, reliability 

targets requires exploiting new 
features 
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What This (might) Mean for 
Applications  

•  Weak scaling limits the range of problems 
♦  Latency may be critical (also, some applications 

nearing limits of spatial parallelism) 
•  Rich execution model makes performance 

portability unrealistic 
♦  Applications will need to be flexible with both their 

use of abstractions and their implementation of 
those abstractions 

•  One Answer: Programmers will need help with 
performance issues, whatever parallel 
programming system is used 
♦  Much of this is independent of the internode 

parallelism, and can use DSLs, annotations, source-
to-source transformations. 
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Where Is MPI Today? 

• Applications already running at 
large scale: 
System Cores 
Tianhe-2 3,120,000 (most in Phi) 
Sequoia 1,572,864 
Blue Waters 792,064* + 1/6 acc 
Mira 786,432 
K computer 705,024 
Julich BG/Q 458,752 
Titan 299,008* + acc 

* 2 cores share a wide FP unit 
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Some Experiments over 1M 
MPI Processes 

•  ROSS Parallel Discrete Event Simulator 
♦ Used over 7.8M MPI processes on 2 

combined BG/Q systems at LLNL, 4 ranks 
per core 

♦  “Warp Speed: Executing Time Warp on 
1,966,080 Cores,” Barnes, Carothers 
Jefferson, LaPre, PADS 2013 

•  FG-MPI implements MPI ranks as 
coroutines 
♦ Wagner at UBC 
♦ Over 100M MPI ranks on 6,480 cores 
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MPI+X 

•  Many reasons to consider MPI+X 
♦ Major: We always have:  

• MPI+C, MPI+Fortran 
♦ Both C11 and Fortran include support of 

parallelism (shared and distributed memory) 
•  Abstract execution models becoming 

more complex 
♦ Experience has shown that the programmer 

must be given some access to performance 
features 

♦ Options are (a) add support to MPI and (b) let 
X support some aspects 
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X = MPI (or X = ϕ) 

•  MPI 3.0 features esp. important for 
Exascale 
♦ Generalize collectives to encourage post 

BSP programming: 
• Nonblocking collectives 
• Neighbor - including nonblocking - collectives 

♦ Enhanced one-sided (recall AMM targets) 
•  Precisely specified (see “Remote Memory Access 

Programming in MPI=3,” Hoefler et at, to appear 
in ACM TOPC) 

• Many more operations in cluding RMW 

♦ Enhanced thread safety 



15 

X = Programming with Threads 

• Many choices, different user 
targets and performance goals 
♦ Libraries: Pthreads, TBB 
♦ Languages: OpenMP 4, C11/C++11 

• C11 provides an adequate (and 
thus complex) memory model to 
write portable thread code 
♦ Also needed for MPI-3 shared 

memory 



16 

X=UPC (or CAF or …) 
•  MPI Processes are UPC 

programs (not 
threads), spanning 
multiple coherence 
domains.  This model 
is the closest 
counterpart to the MPI
+OpenMP model, using 
PGAS to extend the 
"process" beyond a 
single coherence 
domain. 

•  Could be PGAS across 
chip 

Memory 
CPU CPU CPU 

Memory 
CPU CPU CPU 

Memory 
CPU CPU CPU 

Memory 
CPU CPU CPU 

Memory 
CPU CPU CPU 

Memory 
CPU CPU CPU 

MPI Process/ 
UPC Program 
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What are the Issues? 

•  Isn’t the beauty of MPI + X that 
MPI and X can be learned (by 
users) and implemented (by 
developers) independently? 
♦ Yes (sort of) for users 
♦ No for developers 

• MPI and X must either partition or 
share resources 
♦ User must not blindly oversubscribe 
♦ Developers must negotiate 
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More Effort needed on the “+” 

• MPI+X won’t be enough for Exascale if 
the work for “+” is not done very well 
♦ Some of this may be language 

specification: 
• User-provided guidance on resource 

allocation, e.g., MPI_Info hints; thread-based 
endpoints 

♦ Some is developer-level standardization 
• A simple example is the MPI ABI specification 

– users should ignore but benefit from 
developers supporting 
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Some Resources to Negotiate 

•  CPU resources 
♦  Threads and contexts 
♦  Cores (incl placement) 
♦  Cache 

•  Memory resources 
♦  Prefetch, outstanding 

load/stores 
♦  Pinned pages or 

equivalent NIC needs 
♦  Transactional memory 

regions 
♦  Memory use (buffers) 

•  NIC resources 
♦  Collective groups 
♦  Routes 
♦  Power 

•  OS resources 
♦  Synchronization 

hardware 
♦  Scheduling 
♦  Virtual memory 
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Which MPI? 

•  Many new features in MPI-3 
♦ Many programs still use subsets 

of MPI-1 
•  MPI implementations still 

improving 
♦ A long process – harmed by 

non-standard shortcuts 
•  MPI Forum is active and 

considering new features 
relevant for Exascale 
♦ MPI 3.1 expected in September 
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Fault Tolerance 

•  Often raised as a major issue for Exascale systems 
♦  Experience has shown systems more reliable than simple 

extrapolations assumed 
•  Hardly surprising – reliability is costly, so systems 

engineered only to the reliability needed 

•  Major question: What is the fault model? 
♦  Process failure (why) 

•  Software – then program is buggy.  Recovery may not make 
sense 

•  Hardware – Where (CPU/Memory/NIC/Cables)? Recovery 
may be easy or impossible 

♦  Silent data corruption 

•  Unsolved problem – impact of faults on X (and +) 
in MPI+X 
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Fault Tolerance 

•  Most effort in MPI Forum is on process fail-
stop faults 

•  Other faults may be more important 
♦  I/O failover faults.  How long should an I/O operation 

wait before failing, and should the operation be 
safely restartable? Who is responsible? 

♦  Silent data corruption. 
•  Data in numeric values.  Often easy to define restart.  

State of program is correct, except for the affected 
data (and tainted data) 

•  Data in code, pointers, key data structures.  State of 
program may be unknown.  Restart needed from 
known good state 
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Separate Coherence Domains 
and Address Spaces 

•  Already many systems without cache 
coherence and with separate address spaces 
♦  GPUs best example; unlikely to change even when 

integrated on chip 
♦  OpenACC an “X” that supports this 

•  MPI designed for this case 
♦  Despite common practice, MPI definition of 

MPI_Get_address supports, for example, segmented 
address spaces 

•  MPI RMA “separate” memory model also fits 
this case 
♦  “Separate” model defined in MPI-2 to support the 

World’s fastest machines, including NEC SX series 
and Earth Simulator 
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Towards MPI-4 

•  Many extensions being considered, either by the Forum 
or as Research, including 

•  Other communication paradigms 
♦  Active messages 

•  Toward Asynchronous and MPI-Interoperable Active Messages, 
Zhao et al, CCGrid’13 

♦  Streams 
•  Tighter integration with threads 

♦  Endpoints 
•  Data centric 

♦  More flexible datatypes 
♦  Faster datatype implementations 

•  Unified address space handling 
♦  E.g., GPU memory to GPU memory without CPU processing 
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MPI and Execution Models 

•  MPI’s Execution model is… 
♦ Blissfully simple: Communicating Sequential 

Processes 
•  Some complexity in communication, esp. MPI-3 

one-sided 
♦ Process operations are copy, pointwise 

arithmetic/logic/bit, read/write (I/O) 
♦ MPI adds two-party and group 

synchronization and operations 
♦ No performance guarantees 
♦ Deliberately vague on progress 
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MPI and Exascale Execution 
Models 

• End of Dennard scaling, end of 
Moore’s law, forcing new, more 
complex execution models 
♦ Some can be buried in the “X”, e.g., 

stream programming 
♦ Some can be buried in the “+”, e.g., 

limited resources for implementing 
runtimes and programming systems 

♦ Some may need to be exposed to the 
MPI programmer 
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MPI is not a BSP system 

•  BSP = Bulk Synchronous Programming 
♦  Programmers like the BSP model, adopting it even 

when not necessary (see FIB) 
♦  Unlike most programming models, designed with a 

performance model to encourage quantitative design 
in programs 

•  MPI makes it easy to emulate a BSP system 
♦  Rich set of collectives, barriers, blocking operations 

•  MPI (even MPI-1) sufficient for dynamic 
adaptive programming 
♦  The main issues are performance and “progress” 
♦  Improving implementations and better HW support 

for integrated CPU/NIC coordination the answer 
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Some Remaining Issues 

•  Latency and overheads 
♦  Libraries add overheads 

•  Several groups working on applying compiler 
techniques to MPI and to using annotations to 
transform user’s code; can address some issue 

•  Execution model mismatch 
♦ How to make it easy for the programmer to 

express operations in a way that makes it 
easy to exploit innovative hardware or 
runtime features? 

♦ Especially important for Exascale, as 
innovation essential in meeting 20MW, 
MTBF, total memory, etc. 
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Summary 

• MPI a viable component in an 
Exascale software stack 

• But addresses only part of the 
problem 

• More work is needed on effective 
combination of systems (the “+”) 

• More work is needed on 
automation for performance and 
for performance portability 


