MPI+X for Extreme Scale Computing

William Gropp
http://wgropp.cs.illinois.edu

PYNCSA

Some Likely Exascale Architectures

|Mai memory IM memory
(Low Capacity, High Bandwidth)
NN T
MC [TTTT MC LITT] (High Capacity,
LT o H L e [| Low Bandwidth)
—— cluster ——f H— i
MPE MPE
Group Group
S ——— 2 —)
=~ =+
I I 1024 64-bit RISC cores
Group Group 64MB on-chip SRAM
1024 programmable 10s
MPE MPE
T e H B CPE il Figure 2.1: Abstract Machine Model of an exascale Node Architecture
MC T MC T[T
[TT11 el e e

I Main memory I Main memory

Sunway TaihuLight From “Abstract Machine Adapteva Epiphany-V
« Heterogeneous ,Iz\/locrl].etls ?”d P]';Oxy - 1024 RISC
rchitectures for FOCESSOrS
processors (MPE, Exascale Computing . 22
CPE) " x32 mesh
Rev 1.1,” J Ang et al :
« No data cache * Very high power
efficiency (70GF/W)

IINCSA -

MPI (The Standard) Can Scale Beyond Exascale

* MP| implementations already supporting more than 1M

processes
» Several systems (including Blue Waters) with over 0.5M independent cores

* Many Exascale designs have a similar number of nodes as
today’s systems
* MPI as the internode programming system seems likely

* There are challenges
« Connection management
» Buffer management
* Memory footprint
* Fast collective operations
* And no implementation is as good as it needs to be, but

* There are no intractable problems here - MP| implementations can
be engineered to support Exascale systems, even in the MPI-
everywhere approach

IYNCSA

Applications Still Mostly MPI-Everywhere

* “the larger jobs (> 4096 nodes) mostly use message
passing with no threading.” - Blue Waters Workload study,
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924 .pdf

 Benefit of programmer-managed locality
* Memory performance nearly stagnant (will HBM save us?)

 Parallelism for performance implies locality must be managed
effectively

* Benefit of a single programming system
 Often stated as desirable but with little evidence

« Common to mix Fortran, C, Python, etc.

 But...Interface between systems must work well, and often don’t

* E.g., for MPI+OpenMP, who manages the cores and how is that
negotiated?

IYNCSA

Why Do Anything Else?

* Performance
« May avoid memory (though usually not cache) copies

- Easier load balance
« Shift work among cores with shared memory

* More efficient fine-grain algorithms
* Load/store rather than routine calls

* Option for algorithms that include races (asynchronous
iteration, ILU approximations)

* Adapt to modern node architecture...

IYNCSA

SMP Nodes: One Model

.

/ MPI Process

N

\ MPI Process

' MPI Process

77

: MPI Process

' MPI Process

: MPI Process

: MPI Process

K:MPI Process

N

\

Vs
.

MPI Process\:

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

APV ININNNN

MPI Process

Ve

.

’

MPI Process/:

IYNCSA

Classic Performance Model

es+rn
« Sometimes called the “postal model”
* Model combines overhead and network latency (s)

and a single communication rate 1/r for n bytes of
data

* Good fit to machines when it was introduced

* But does it match modern SMP-based machines?

* Let’s look at the the communication rate per process
with processes communicating between two nodes

IYNCSA

Rates Per MPI| Process

é * Ping-pong between 2
~~ = nodes using 1-16

< =
3 P = cores on each node
g yd = <Top is BG/Q, bottom
At — Cray XEG6
. *"Classic” model
= . predicts a single curve
= - rates independent of
= — the number of
3 = communicating
S —X processes

1.00E+10

.00E+09

Per Process Rate B/sec™

—_

.00E+08

1.00E+07

Internode Pingpong Performance

——

~

=

10

100

1000
Message Size Doubles

10000

100000

—Series
e—Series3
e Seriesb
e Series?
e===Series9
e Series11
e Series13
e—=Series15
e Series17
e Series19
Series21
e Series23
e Series25
Series27
e Series29
e Series31
Series33
e Series35
e—Series37
Series39
e Series41
e Series43
Series45
e===Series47
«===Series49
Series51
Series53
Series55
Series57
Series59
Series61
Series63

—Series2
e Seriesd
e Seriest
e Series8
e=Series10
e Series12
e—Series14
e—Series16
e Series18
e Series20
e==Series22
e Series24
—Series26
«===Series28
e Series30
e Series32
Series34
—Series36
e===Series38
Series40
e Series42
= Series44
Series46
«===Series48
Series50
Series52
Series54
Series56
Series58
Series60
Series62
Series64

Why this Behavior?

*The T = s + r n model predicts the same
performance independent of the number of
communicating processes

* What is going on?
* How should we model the time for communication?

/:MPI Process D ;{ MPI Process\j
: MPI Process]\ MPI Process
: MPI Process }\x //{ MPI Process
: MPI Process]\ /[MPI Process
: MPI Process]/ MPI Process
: MPI Process }// \\{ MPI Process
: MPI Process]/ \[MPI Process
\MPI Process / \ MPI Process/

IYNCSA

A Slightly Better Model

* For k processes sending messages, the sustained
rate is
* Min(Ryic-nics K Reoreanic)
* Thus

e[=s+k n/min(RN|C_N|C1 K RCORE-N|C)

*Note if Ryc.nic 1S very large (very fast network), this
reduces to
*T=s+kn/(k Reorenic) =S + NReorenic

* KNL may need a similar term for s: s+max(0,(k-k;)s;) ,
representing an incremental additional cost once more
than k, concurrently communicating processes

IYNCSA

How Well Does this Model Work?

 Tested on a wide range of systems:
* Cray XE6 with Gemini network
* IBM BG/Q
* Cluster with InfiniBand
e Cluster with another network

* Results Iin

* Modeling MPI Communication Performance on SMP

Nodes: Is it Time to Retire the Ping Pong Test
W Gropp, L Olson, P Samfass

» Proceedings of EuroMPI 16
* https://doi.org/10.1145/2966884.2966919

* Cray XEG results follow

IYNCSA

Cray: Measured Data

I\
i\

—~e~ e~~~ e~~~

TCOOCOTOCOCOOOCOA0O0000 |

ppppppppp0123456
AANNTNONOO A

PTI98 0 008

////////
,,,___,
<
N[
N
i

10°

N

10° 10* 10
message length [bytes]

102

10t

10°

o

—
o
—

(<)) [ee] ~ O

o o o
— — —

[puodas/sa1Aq] yipimpueq aAI11D3))a a1ebaibbe

10

IYNCSA

Cray: 3 parameter (new) model

| e A BT E
L\ Tlacancdddddelll B
\\ |
N .

//// . 40

AN 5
AN 5
AN
g

—l

[puod3as/sa1Aq] yipimpueq aAI303)40 aiebalbbe

IYNCSA

message length [bytes]

Cray: 2 parameter model

[puodas/sa1Aq] yipimpueq aAI11D3))a a1ebaibbe

| ///M//z/— ’ muwmmmmmwmmmmmmmu
N 1158dd 15
e / 1999999) |
LN
R .
/%// |
NN
N\)
L z_i E
AN
N
///// 'S
N
Vi
N ks
AN\ “

message length [bytes]

IYNCSA

Implications

» Simple “BSP” style programming will often be
communication limited

* MPI supports many more flexible and general
communication approaches
» But users must use them

* (Relatively) Simple

» Use communication/computation overlap
* MPI must implement at least limited asynchronous progress

« Exercise care in mapping MPI processes to cores/chips/nodes

» Use one-sided programming
* Mostly non-blocking by design
 MPI Forum continuing to look at extensions, such as one-sided
notification and non-blocking synchronization

» Use lightweight threads with over-decomposition
 Let thread scheduler switch between communication and compute

IANCSA ¢

What To Use as X in MP| + X?

* Threads and Tasks
* OpenMP, pthreads, TBB, OmpSs, StarPU, ...

« Streams (esp for accelerators)
* OpenCL, OpenACC, CUDA, ...

* Alternative distributed memory system
« UPC, CAF, Global Arrays, GASPI/GPI

* MP| shared memory

X =MPI (or X = @)

* MPI 3.1 features esp. important for Exascale

» Generalize collectives to encourage post BSP (Bulk
Synchronous Programming) approach:
« Nonblocking collectives
* Neighbor — including nonblocking — collectives

 Enhanced one-sided

* Precisely specified (see “Remote Memory Access Programming
in MPI-3,” Hoefler et at, in ACM TOPC)

* http://dl.acm.org/citation.cfm?doid=2780584
* Many more operations including RMW

« Enhanced thread safety

IYNCSA

X = Programming with Threads

* Many choices, different user targets and
performance goals
 Libraries: Pthreads, TBB
» Languages: OpenMP 4, C11/C++11

*C11 provides an adequate (and thus complex)
memory model to write portable thread code

 Also needed for MPI-3 shared memory; see “Threads
cannot be implemented as a library”,
http://www.hpl.hp.com/techreports/2004/
HPL-2004-209.html

* Also see “You don’t know Jack about Shared Variables
or Memory Models”, CACM Vol 55#2, Feb 2012

IYNCSA

What are the Issues?

*|sn’t the beauty of MPI| + X that MPI and X can be
learned (by users) and implemented (by
developers) independently?

* Yes (sort of) for users
* No for developers

 MPI and X must either partition or share resources
« User must not blindly oversubscribe
* Developers must negotiate

IYNCSA

More Effort needed on the “+”

MPI+X won’t be enough for Exascale if the
work for “+” is not done very well

« Some of this may be language specification:

« User-provided guidance on resource allocation, e.g., MPI_Info
hints; thread-based endpoints, new APls

* Some is developer-level standardization

« A simple example is the MPI ABI specification — users should
ignore but benefit from developers supporting

IYNCSA

Some Resources to Negotiate

« CPU resources * NIC resources
* Threads and contexts * Collective groups
 Cores (incl placement) * Routes
» Cache * Power
* Memory resources * OS resources
- HBM, NVRAM « Synchronization hardware
 Prefetch, outstanding load/ « Scheduling
stores » Virtual memory
* Pinned pages or equivalent » Cores (dark silicon)
NIC needs
 Transactional memory
regions

* Memory use (buffers)

IYNCSA

More Challenges For Extreme Scale Systems

« Simple MPI everywhere models hide important performance issues
» Impacts algorithms - ex SpMV

 MPI implementations don'’t take nodes into account

* Impacts memory overhead, data sharing
* Process topology - Dims_create (for Cart_create) wrong APl - ex nodecart

* File I1/O bottlenecks

« Metadata operations impact scaling, even for file/process (or should it be
file per node?)

« Need to monitor performance; avoid imposing too much order on
operations - ex MeshlO
« Communication synchronization
« Common “bogeyman” for extreme scale
« But some of the best algorithms use, e.g., Allreduce
» Reorder operations to reduce communication cost; permit overlap
« Ex scalable CG algorithms and implementations

IYNCSA

Node-Aware Sparse Matrix-Vector Product

. Sp%rset mt?]trix-vec%or
g{goﬁt%?ns e core 1o many TAPSpMV Communication

* E.g., in Krylov methods and in
stencil application

 “Good” mappings of
rocesses to nodes for
ocality also mean that the
same data may be needed
for different processes on R
the same node |

 Can significantly improve
performance by trading
Intra-node for internode
communication...

* Work of Amand Bienz and
Luke Olson

IYNCSA

) AMG Level
Number inter-node Size inter-node

MPI Process Topology: The Reality

* MPI provides a rich set of Comparison of Process Mappings
routines to allow the MPI -
Implementation to map
processes to physical
hardware

e But in practice, behaves

poorly or ignored (allowed by| =
the standard) S

» Halo exchange illustrates

» Cart uses MPI_Cart_create

* Nc is a user-implemented version
that taeks noes into account

* Nc is about 2x as fast

* Note both have scaling problems
(the network topology)

SRRl

>
=~

Bandwidth/process

IYNCSA

|O Performance Often Terrible

 Applications just assume |/
O is awful and can't be -MM

fixed PlasComCM 4500 4500
* Even simple patterns not MILC 750 156 48
handled well

- Example: read or write a * Meshio library built to
submesh of an N-dim mesh match application needs
at an arbitrary offset in file Replaces many lines in

* Needed to read input mesh app with a single
in PlasComCM. Total I/O collective 110 call
time less than 10% for long Meshi
science runs (thatis <15~ * Meshio.
hours) https://github.com/

- But long init phase makes oshkosher/meshio

debugging, developmenthard |, \n5ri of EJ Karrels

IYNCSA

Scalable Preconditioned Conjugate Gradient

Methods

* Reformulations of CG trade computation
for the ability to overlap communication

» Hide communication costs and absorb
noise to produce more consistent runtimes

* Must overlap allreduce with more matrix
kernels as work per core decreases and
communication costs increase

 Faster, more consistent runtimes in noisy
environments

* Effective for simpler preconditioners and
shows some speedups for more complex
preconditioners without modifications

» Work of Paul Eller, “Scalable Non-blocking
Preconditioned Conjugate Gradient
Methods”, SC16
http.//ieeexplore.ieee.org/document/
7877096/

2.0

1.8 NBP!

20k 40k 60k 80k 100k 120k 140k
Cores

2.0 Strong Scaling Test Speedups

Figure: 27-point Poisson matrices with
4k rows per core (top) and 5123 rows
(bottom)

IYNCSA

Summary

* Multi- and Many-core nodes require a new
communication performance model

* Implies a different approach to algorithms and increased
emphasis on support for asynchronous progress

*In turn, these require new algorithms and software
Implementations
 Locality remains critical

 MP| implementations need to do more to exploit
intranode features
« Fast memory synchronization, signaling essential for fast
use of shared memory
 Implementation is tricky, for example:

* Most (all?) current MPI implementations have very slow intra-
node MPI_Barrier.

IYNCSA

Thanks!

* Philipp Samfass

 Luke Olson

« Pavan Balaji, Rajeev Thakur, Torsten Hoefler
« ExxonMobile Upstream Research

* Blue Waters Sustained Petascale Project, supported by the
National Science Foundation (award number OCI| 07—
25070) and the state of lllinois.

* Argonne Leadership Computing Facility

* Cisco Systems for access to the Arcetri UCS Balanced
Technical Computing Cluster

IYNCSA

