
Challenges in Intranode and
Internode Programming for

HPC Systems
William Gropp

wgropp.cs.illinois.edu

Department of Computer Science
and

National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

Towards Exascale Architectures

From “Abstract Machine
Models and Proxy
Architectures for
Exascale Computing
Rev 1.1,” J Ang et al

June 19, 2016 2

Figure 1: Core Group for Node

Figure 2: Basic Layout of a Node Sunway TaihuLight
• Heterogeneous

processors (MPE,
CPE)

• No data cache
• Tianhe2a has

some data cache

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

Adapteva Epiphany-V
• 1024 RISC

processors
• 32x32 mesh
• Very high power

efficiency (70GF/W)

DOE Sierra
• Power 9 with 4 NVIDA

Volta GPU
• 4320 nodes
DOE Summit similar, but
• 6 NVIDIA GPUs/node
• 4608 nodes

Next Generation
System?

All Heterogeneous
Increasing
diversity in
accelerator

choices
NCSA Deep Learning System

16 nodes of Power 9 with 4
NVIDIA Volta GPU +

FPGA

• HPC Focus is typically on scale
• “How will we program a million (or a billion) cores?
• “What can use use to program these machines?”

• This talk focuses on some of the overlooked issues
• Performance models still (mostly) process to process and single core

• Node bottlenecks missed; impacts design from hardware to algorithms
• Dream of “Performance Portability” stands in the way of practical solutions

to “transportable” performance
• HPC I/O requirements impede performance, hurt reliability

• This talk does not talk about the need for different algorithms for
different architectures – there is no magic fix

• But some ideas and approaches here can help

Where are the real problems in using HPC Systems?

Programming Models and Systems
• In past, often a tight connection between the execution model and the

programming approach
• Fortran: FORmula TRANslation to von Neumann machine
• C: e.g., “register”, ++ operator match PDP-11 capabilities, needs

• Over time, execution models and reality changed but programming models
rarely reflected those changes

• Rely on compiler to “hide” those changes from the user – e.g., auto-vectorization for
SSE(n)

• Consequence: Mismatch between users’ expectation and system abilities.
• Can’t fully exploit system because user’s mental model of execution does not match real

hardware
• Decades of compiler research have shown this problem is extremely hard – can’t expect

system to do everything for you.

The Easy Part – Internode communication
• Often focus on the “scale” in Exascale as the hard part

• How to deal with a million or a billion processes?
• But really not too hard

• Many applications have large regions of regular parallelism
• Or nearly impossible

• If there isn’t enough independent parallelism

• Challenge is in handling definition and operation on distributed data
structures

• Many solutions for the internode programming piece
• The dominant one in technical computing is the Message Passing Interface

(MPI)

Modern MPI
• MPI is much more than message passing

• I prefer to call MPI a programming system rather than a programming model
• Because it implements several programming models

• Major features of MPI include
• Rich message passing, with nonblocking, thread safe, and persistent versions
• Rich collective communication methods
• Full-featured one-sided operations

• Many new capabilities over MPI-2
• Include remote atomic update

• Portable access to shared memory on nodes
• Process-based alternative to sharing via threads
• (Relatively) precise semantics

• Effective parallel I/O that is not restricted by POSIX semantics
• But see implementation issues …

• Perhaps most important
• Designed to support “programming in the large” – creation of libraries and tools

• MPI continues to evolve – MPI “next” Draft released at SC in Dallas last November, and
updated at SC in Denver this year. See https://www.mpi-forum.org/docs/drafts/mpi-
2019-draft-report.pdf

https://www.mpi-forum.org/docs/drafts/mpi-2019-draft-report.pdf

Applications Still Mostly MPI-Everywhere
• “the larger jobs (> 4096 nodes) mostly use message passing with

no threading.” – Blue Waters Workload study,
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf

• Benefit of programmer-managed locality
• Memory performance nearly stagnant (will HBM save us?)
• Parallelism for performance implies locality must be managed effectively

• Benefit of a single programming system
• Often stated as desirable but with little evidence
• Common to mix Fortran, C, Python, etc.
• But…Interface between systems must work well, and often don’t

• E.g., for MPI+OpenMP, who manages the cores and how is that negotiated?
• Don’t forget the “+” in “MPI + X”!

https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf

MPI On Multicore Nodes
• MPI Everywhere (single core/single thread MPI processes) still common

• Easy to think about
• We have good performance models (or do we?)

• In reality, there are issues
• Memory per core declining

• Need to avoid large regions for data copies, e.g., halo cells
• MPI implementations could share internal table, data structures

• May only be important for extreme scale systems
• MPI Everywhere implicitly assume uniform communication cost model

• Limits algorithms explored, communication optimizations used
• Even here, there is much to do for

• Algorithm designers
• Application implementers
• MPI implementation developers

• One example: Can we use the single core performance model for MPI?

Rates Per MPI Process
• Ping-pong between 2

nodes using 1-16
cores on each node

• Top is BG/Q, bottom
Cray XE6

• “Classic” model
predicts a single curve
– rates independent of
the number of
communicating
processes

B
an

dw
id

th
B

an
dw

id
th

Why this Behavior?
• The T = s + r n model predicts the same performance independent

of the number of communicating processes
• What is going on?
• How should we model the time for communication?

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

A Slightly Better Model
• For k processes sending messages, the sustained rate is

• min(RNIC-NIC, k RCORE-NIC)
• Thus

• T = s + k n/min(RNIC-NIC, k RCORE-NIC)
• Note if RNIC-NIC is very large (very fast network), this reduces to

• T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC

• This model is approximate; additional terms needed to capture
effect of shared data paths in node, contention for shared
resources, etc.

• But this new term is by far the dominant one

Comparison on Cray XE6

Measured Data Max-Rate Model
Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire
the Ping Pong Test, W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16,

https://doi.org/10.1145/2966884.2966919

https://doi.org/10.1145/2966884.2966919

InfiniBand Cluster (Taub at Illinois)

(a) Measured data (TCP). (b) Max-rate, three-parameter model (TCP).

(c) Relative error (TCP).

(d) Measured data (IB). (e) Max-rate, three-parameter model (IB).

(f) Relative error (IB).

Figure 3: Aggregate effective bandwidth on the Illinois Taub Cluster with InfiniBand. 1 (bottom line) to 12 (top line)
communicating processing pairs using TCP/MPICH 3.1.3 (top row) and InfiniBand/MVAPICH2.1 (bottom row).

(a) Measured data. (b) Max-rate, three-parameter model.
(c) Relative error.

Figure 4: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

IBM BG/Q

(a) Measured data (TCP). (b) Max-rate, three-parameter model (TCP).

(c) Relative error (TCP).

(d) Measured data (IB). (e) Max-rate, three-parameter model (IB).

(f) Relative error (IB).

Figure 3: Aggregate effective bandwidth on the Illinois Taub Cluster with InfiniBand. 1 (bottom line) to 12 (top line)
communicating processing pairs using TCP/MPICH 3.1.3 (top row) and InfiniBand/MVAPICH2.1 (bottom row).

(a) Measured data. (b) Max-rate, three-parameter model.
(c) Relative error.

Figure 4: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

(a) Measured data. (b) Modified max-rate model.
(c) Relative error of the model fit.

Figure 5: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

(a) Measured data. (b) Max-rate, three-parameter model.

(c) Relative error.

Figure 6: Aggregate effective bandwidth results the Cisco cluster. The number of communicating pairs increases from bottom
to top.

T=kn/min(RN,kn/(s+n/RC))

Includes message
overhead (assumes not
fully overlapped)

Cisco Cluster

(a) Measured data. (b) Modified max-rate model.
(c) Relative error of the model fit.

Figure 5: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

(a) Measured data. (b) Max-rate, three-parameter model.

(c) Relative error.

Figure 6: Aggregate effective bandwidth results the Cisco cluster. The number of communicating pairs increases from bottom
to top.

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

message size [bytes]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

b
a
n

d
w

id
th

[b
y
te

s/
se

c]

×109

25548 Bytes

slope=7713
slope=17971

Figure 7: Bandwidth rates using mpptest on the Cisco clus-
ter. buflimit identifies the threshold at 25548 bytes.

be identified and different model parameters used in each
regime. While the decision to use eager, rendezvous, or an-
other protocol is up to the MPI implementation (and there
are other choices, such as a eager with a NACK to reject mes-
sages that are too long), most MPI implementations choose
among a few protocols depending on the message length,
and this should be taken into account in algorithm analysis
and design.
As an example of the use of this model in algorithm de-

sign, consider the question of how many processes on a node
should communication at the same time to minimize the
communication time. This requires achieving the maximum
bandwidth out of the node. Using the new model, the min-
imum time is achieved when the number of communication
MPI processes is k = RN/Rc, assuming no communica-
tion/computation overlap.
In summary, we hope the community adopts this model

for communication time as it gives a much more accurate ap-
proximation to the performance of MPI on multicore nodes
and is nearly as easy to use as the venerable postal model.

5.1 Acknowledgments
This research was supported in part by ExxonMobil Con-

tract EM08150.9. This research is part of the Blue Waters
sustained-petascale computing project, which is supported
by the National Science Foundation (award number OCI 07–
25070) and the state of Illinois. The authors are grateful for
the access to the Arcetri UCS Balanced Technical Comput-
ing Cluster at Cisco Systems.

6. REFERENCES
[1] T. Agarwal, A. Sharma, and L. V. Kalé.

Topology-aware task mapping for reducing
communication contention on large parallel machines.
In Proceedings of the 20th International Conference on
Parallel and Distributed Processing, IPDPS’06, pages
145–145, Washington, DC, USA, 2006. IEEE
Computer Society.

[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating long messages
into the LogP model—one step closer towards a
realistic model for parallel computation. In
Proceedings of the Seventh Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA ’95,
pages 95–105, New York, NY, USA, 1995. ACM.

[3] A. Bar-Noy and S. Kipnis. Designing broadcasting
algorithms in the postal model for message-passing
systems. In Proceedings of the Fourth Annual ACM
Symposium on Parallel Algorithms and Architectures,
SPAA ’92, pages 13–22, New York, NY, USA, 1992.
ACM.

[4] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale.
Avoiding hot-spots on two-level direct networks. In
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 76:1–76:11, New York, NY,
USA, 2011. ACM.

[5] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay,
E. E. Santos, K. E. Schauser, R. Subramonian, and
T. von Eicken. LogP: A practical model of parallel
computation. Commun. ACM, 39(11):78–85, Nov.
1996.

[6] W. D. Gropp and E. Lusk. Reproducible
measurements of MPI performance characteristics. In
J. Dongarra, E. Luque, and T. Margalef, editors,
Recent Advances in Parallel Virtual Machine and
Message Passing Interface, volume 1697 of Lecture
Notes in Computer Science, pages 11–18. Springer
Verlag, 1999. 6th European PVM/MPI Users’ Group
Meeting, Barcelona, Spain, September 1999.

[7] N. A. W. A. Hamid and P. D. Coddington.
Comparison of MPI benchmark programs on shared
memory and distributed memory machines
(point-to-point communication). IJHPCA,
24(4):469–483, 2010.

[8] R. Hockney and C. Jesshope. Parallel Computers:
Architecture, Programming and Algorithms. 1981.

[9] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm.
Netgauge: A network performance measurement
framework. In R. H. Perrott, B. M. Chapman,
J. Subhlok, R. F. de Mello, and L. T. Yang, editors,
HPCC, volume 4782 of Lecture Notes in Computer
Science, pages 659–671. Springer, 2007.

[10] S. Hunold, A. Carpen-Amarie, and J. L. Träff.
Reproducible MPI micro-benchmarking isn’t as easy
as you think. In J. Dongarra, Y. Ishikawa, and
A. Hori, editors, EuroMPI/ASIA, page 69. ACM,
2014.

[11] Intel Corporation. Getting started with Intel MPI
Benchmarks 4.1.

[12] Phloem MPI benchmarks.
https://asc.llnl.gov/sequoia/benchmarks/
PhloemMPIBenchmarks summary v1.0.pdf.

[13] P. Luszczek, J. J. Dongarra, D. Koester,
R. Rabenseifner, B. Lucas, J. Kepner, J. Mccalpin,
D. Bailey, and D. Takahashi. Introduction to the HPC
Challenge Benchmark Suite. Technical report, 2005.

[14] H. Mierendorff, K. Cassirer, and H. Schwamborn.
Working with MPI benchmarking suites on ccNUMA
architectures. In J. Dongarra, P. Kacsuk, and
N. Podhorszki, editors, Recent Advances in Parallel
Virutal Machine and Message Passing Interface,
number 1908 in Springer Lecture Notes in Computer
Science, pages 18–26, Sept. 2000.

[15] OSU Micro-Benchmarks 5.3.
http://mvapich.cse.ohio-state.edu/benchmarks/.

[16] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E.

MPI Virtual Process Topologies
• Lets user describe some common communication patterns
• Promises

• Better performance (with “reorder” flag true)
• Convenience in describing communication (at least with Cartesian process

topologies)
• Reality

• “Reorder” for performance rarely implemented
• Few examples include NEC SX series and IBM BlueGene/L

• Challenge to implement in general
• Perfect mapping complex to achieve except in special cases

• And perfect is only WRT the abstraction, not the real system

• Rarely used in benchmarks/applications, so does not perform well,
so is rarely used in benchmarks/applications

Example Cartesian Process Mesh – Four Nodes

0 1

4 5

2 3

6 7

8 9

12 13

10 11

14 15

17

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Desired Typical Process Mapping

Can We Do Better?
• Hypothesis: A better process mapping within a node will provide

significant benefits
• Ignore the internode network topology

• Vendors have argued that their network is fast enough that process mapping isn’t
necessary

• They may be (almost) right – once data enters the network

• Idea for Cartesian Process Topologies
• Identify nodes (see MPI_Comm_split_type)
• Map processes within a node to minimize internode communication

• Trading intranode for internode communication
• Using Node Information to Implement MPI Cartesian Topologies, Gropp, William D.,

Proceedings of the 25th European MPI Users' Group Meeting, 18:1–18:9, 2018
https://dl.acm.org/citation.cfm?id=3236377

• Using Node and Socket Information to Implement MPI Cartesian Topologies, Parallel
Computing, 2019 https://doi.org/10.1016/j.parco.2019.01.001

https://dl.acm.org/citation.cfm?id=3236377
https://doi.org/10.1016/j.parco.2019.01.001

Algorithm
• Find the nodes

• MPI provides a way to split a communicator based on a characteristic;
MPI_COMM_TYPE_SHARED works on all systems

• Create communicators of (a) all processes on the same node
(nodecomm) and (b) the 0th process from each node (leadercomm)

• All processes now know number of processes on each node and the number of
nodes

• Form a 2 (or 3) level decomposition of the process mesh
• Factor dimensions and find consistent pair in each dimension

• From rank in nodecom and leadercomm, compute coordinates in node
and among nodes. Gives new coordinate in mesh and hence new rank

• Use MPI_Comm_split on this rank to form new Cartesian communicator

Testing the Hypothesis: The Systems
• Blue Waters at Illinois

• Cray XE6/XK7
• 3D mesh (Gemini); service nodes embedded in mesh
• 22,636 XE6 nodes, each with 2 AMD Interlagos (and 4228 XK7 nodes)

• Theta at Argonne
• Cray XC40
• Dragonfly (Aires) interconnect
• 4392 Intel KNL nodes

• Piz Daint at Swiss National Supercomputing Center
• Cray XC50/XC40
• Dragonfly (Aires) interconnect
• 5320 XC50 and 1813 XC40 nodes

Comparing Halo Exchanges

0.00E+00	

2.00E+08	

4.00E+08	

6.00E+08	

8.00E+08	

1.00E+09	

1.20E+09	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

2D	Halo	Exchange	

Cart-16	

Cart-32	

Cart-64	

Ncart-16	

Ncart-32	

Ncart-64	
0.00E+00	

1.00E+08	

2.00E+08	

3.00E+08	

4.00E+08	

5.00E+08	

6.00E+08	

7.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	P
ro
ce
ss
	

Message	Size	

2D	Halo	Exchange	

Cart-32x32	

Cart-64x32	

Ncart-32x32	

Ncart-64x32	

0.00E+00	

1.00E+08	

2.00E+08	

3.00E+08	

4.00E+08	

5.00E+08	

6.00E+08	

7.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

Cart-8	

Cart-16	

Ncart-8	

Ncart-16	

0.00E+00	
5.00E+07	
1.00E+08	
1.50E+08	
2.00E+08	
2.50E+08	
3.00E+08	
3.50E+08	
4.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	P
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

Cart-16x8x8	

Cart-16x16x8	

Ncart-16x8x8	

Ncart-16x16x8	

0.00E+00	

5.00E+07	

1.00E+08	

1.50E+08	

2.00E+08	

2.50E+08	

3.00E+08	

3.50E+08	

4.00E+08	

4.50E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

C-9x8x8	

C-12x12x8	

C-16x12x12	

C-18x16x16	

C-24x24x16	

C-32x24x24	

N-9x8x8	

N-12x12x8	

N-16x12x12	

N-18x16x16	

N-24x24x16	

N-32x24x24	

Blue Waters Theta Piz Daint

0.00E+00	

1.00E+08	

2.00E+08	

3.00E+08	

4.00E+08	

5.00E+08	

6.00E+08	

7.00E+08	

8.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

2D	Halo	Exchange	

Cart-24	

Cart-48	

Cart-96	

Cart-144x128	

Ncart-24	

Ncart-48	

Ncart-96	

Ncart-144x128	

How Important is Network Topology?
• No answer yet, but…
• 432 nodes, 3D halo exchange on

Blue Waters
• Requested a cube of nodes, used

non-standard routines to implement
mapping for network topology

• Part of study into scalable Krylov
methods (looking to avoid the
blocking MPI_Allreduce)

• Nodecart version provides most of
the benefit with no need for network
topology information

• Some (nontrivial) further benefit
possible by taking network topology
into account

• But the largest contribution comes
from node-awareness

• Thanks to Paul Eller for these
results

Further Refining the Model: SpMV for Algebraic
Multigrid

0 1 2 3 4 5 6
Level in AMG Hierarchy

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

T
im

e
(s

ec
on

ds
)

Measured

Max-Rate

Queue Search

Contention

• Intermediate levels if AMG Coarse
Grid problem require many
messages

• Model greatly improved with
queue search time and contention
parameters

• Queue search time dominates
cost on coarse levels

• Leads to new algorithm that
improves performance

• Work of Amanda Bienz et al
https://arxiv.org/abs/1806.02030

https://arxiv.org/abs/1806.02030

Impact of Node-Aware Communication

DG Diffusion

Cost of Ruge-Stuben (RS) and Smoothed Aggregation (SA) AMD compared to Hypre

Work of Amanda Bienz and Luke Olson

Dreams and Reality
• For codes that demand performance (and parallelism almost

always implies that performance is important enough to justify the
cost and complexity of parallelism), the dream is performance
portability

• The reality is that most codes require specialized code to achieve
high performance, even for non-parallel codes

• A typical refrain is “Let The Compiler Do It”
• This is the right answer …

• If only the compiler could do it
• We have lots of evidence that this problem is unsolved – consider one of

the most studied kernels – dense matrix-matrix multiply (DGEMM)
• And what about vectorization?

• Long history of tools and techniques to produce fast code for loops
• Vectorization, streams, etc., dating back nearly 40 years (Cray-1) or more

• Many tools for optimizing loops for both CPUs and GPUs
• Compiler (auto) vectorization, explicit programmer use of directives (e.g., OpenMP or

OpenACC), lower level expressions (e.g., CUDA, vector intrinsics)
• Is there a clear choice?

• Not for vectorizing compilers (e.g., see S. Maleki, Y. Gao, T. Wong,
M. Garzarán, and D. Padua, An Evaluation of Vectorizing Compilers.
PACT 2011)

• Probably not for the others
• OpenACC preliminary examples follow

• Vector tests part of baseenv; OpenACC and OpenMP vectorization
tests under development (and some OpenACC examples follow)

• Need to separate description of semantics and operations
from particular programming system choices

A Simple (?) Problem:
Generating Fast Code for Loops

28

27

6

4

34

ICC

XLCXLC

GCC

1
3

Not Vectorizable

Auto Vectorized

1

3

Vectorizable

Vectorizable but none of the
compilers auto vectorized21

7 18 5

Intel IBM

• Vectorized: Defined as vector version 10% faster than serial version for a given compiler
• Faster: Defined as the fastest among the compiler choices when compiled with vectorization enabled
• Tests on hal.ncsa.Illinois.edu; November 25th

• Xlc: -O4 -qarch=pwr9 -qtune=pwr9 -qhot -qipa=malloc16 -qdebug=NSIMDCOST -qdebug=alwaysspec -qdebug=NFUSE -qnoinline –
qaltivec

• Gcc: -O3 -fivopts -flax-vector-conversions -funsafe-math-optimizations -mcpu=power9 -mtune=native -maltivec -mpower8-vector

• Note vectorization not a guarantee of faster performance, even for data sets that fit in cache
• All examples can be (at least partially) vectorized

Vectorization on Power9 in 2019

gcc xlc

Vectorized Faster Vectorized Faster
Not
Vectorized

Both
Vectorized

double 77 32 45 119 63 34

single 79 40 58 111 56 42

Loop Performance
range in GF

Single Core
Vectorized

OpenACC
multicore

OpenACC tesla
(loop)

OpenACC tesla
(kernel)

Single Precision 2.6-16.3 1.1-3.3 394-1420 1.6-1710
Double Precision 1.3-8.2 -- 320-826 1.4-731

Can We Pick One Approach?

• Test system node
• 2 x Power9 (20 cores each) with 4 NVIDIA Tesla V100 GPU; Only 1 GPU used in tests

• Caveats
• Only basic tuning performed (e.g., -O3, -fast)
• Defaults used (almost certainly not full # cores for OpenACC multicore)
• Data resident on GPU for all tests (small data in these examples to benefit vectorization)
• Only 6 simple vector loop tests used here (112 in more complete set)
• Test time variations not included

• Take-aways
• No absolute winner (though explicit OpenACC for these loops is close for GPU – but poor for CPU)
• Can abstract memory domains
• There are common abstractions but no one system is perfect

• If we can’t have the dream, what do we really need?

A Simple Example: Dense Matrix Transpose

• do j=1,n
do i=1,n

b(i,j) = a(j,i)
enddo

enddo
• No temporal locality (data used

once)
• Spatial locality only if

(words/cacheline) * n fits in cache

• Performance plummets when matrices no
longer fit in cache

Perf limit based on
STREAM

• Lets look at one of the simplest operations for
a single core, dense matrix transpose

• Only a double loop (fewer options to
consider)

Blocking for cache helps
• do jj=1,n,stridej

do ii=1,n,stridei
do j=jj,min(n,jj+stridej-1)

do i=ii,min(n,ii+stridei-1)
b(i,j) = a(j,i)

• Good choices of stridei and
stridej can improve
performance by a significant
factor

• How sensitive is the
performance to the choices of
stridei and stridej?

1
2

3
456789

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 4 5 6 7 8 9

1800-2000

1600-1800

1400-1600

1200-1400

1000-1200

800-1000
600-800

400-600

200-400

0-200

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

1500-2000
1000-1500

500-1000

0-500

Simple, unblocked code compiled
with O3 – 709MB/s

Real Codes Include Performance Workarounds
• Code excerpt from

VecMDot_Seq in PETSc
• Code is unrolled to provide

performance
• Decision was made once (and

verified as worth the effort at the
time)

• Remains part of the code
forevermore

• Unroll by 4 probably good for
vectorization

• But not necessarily best for
performance

• Does not address alignment

dvec2.c Sat Apr 29 13:29:17 2017 3
 sum2 += x0*PetscConj(yy2[0]); sum3 += x0*PetscConj(yy3[0]);
 case 0:
 x += j_rem;
 yy0 += j_rem;
 yy1 += j_rem;
 yy2 += j_rem;
 yy3 += j_rem;
 j -= j_rem;
 break;
 }
 while (j>0) {
 x0 = x[0];
 x1 = x[1];
 x2 = x[2];
 x3 = x[3];
 x += 4;

 sum0 += x0*PetscConj(yy0[0]) + x1*PetscConj(yy0[1]) + x2*PetscConj(yy0[2]) + x3*
PetscConj(yy0[3]); yy0+=4;
 sum1 += x0*PetscConj(yy1[0]) + x1*PetscConj(yy1[1]) + x2*PetscConj(yy1[2]) + x3*
PetscConj(yy1[3]); yy1+=4;
 sum2 += x0*PetscConj(yy2[0]) + x1*PetscConj(yy2[1]) + x2*PetscConj(yy2[2]) + x3*
PetscConj(yy2[3]); yy2+=4;
 sum3 += x0*PetscConj(yy3[0]) + x1*PetscConj(yy3[1]) + x2*PetscConj(yy3[2]) + x3*
PetscConj(yy3[3]); yy3+=4;
 j -= 4;
 }
 z[0] = sum0;
 z[1] = sum1;
 z[2] = sum2;
 z[3] = sum3;
 z += 4;
 i -= 4;
 ierr = VecRestoreArrayRead(yy[0],&yy0);CHKERRQ(ierr);
 ierr = VecRestoreArrayRead(yy[1],&yy1);CHKERRQ(ierr);
 ierr = VecRestoreArrayRead(yy[2],&yy2);CHKERRQ(ierr);
 ierr = VecRestoreArrayRead(yy[3],&yy3);CHKERRQ(ierr);
 yy += 4;
 }
 ierr = VecRestoreArrayRead(xin,&xbase);CHKERRQ(ierr);
 ierr = PetscLogFlops(PetscMax(nv*(2.0*xin->map->n-1),0.0));CHKERRQ(ierr);
 PetscFunctionReturn(0);
}
#endif

/* --*/
PetscErrorCode VecMTDot_Seq(Vec xin,PetscInt nv,const Vec yin[],PetscScalar *z)
{
 PetscErrorCode ierr;
 PetscInt n = xin->map->n,i,j,nv_rem,j_rem;
 PetscScalar sum0,sum1,sum2,sum3,x0,x1,x2,x3;
 const PetscScalar *yy0,*yy1,*yy2,*yy3,*x,*xbase;
 Vec *yy;

 PetscFunctionBegin;
 sum0 = 0.;
 sum1 = 0.;
 sum2 = 0.;

 i = nv;
 nv_rem = nv&0x3;
 yy = (Vec*)yin;
 j = n;
 ierr = VecGetArrayRead(xin,&xbase);CHKERRQ(ierr);

 x = xbase;

 switch (nv_rem) {
 case 3:
 ierr = VecGetArrayRead(yy[0],&yy0);CHKERRQ(ierr);
 ierr = VecGetArrayRead(yy[1],&yy1);CHKERRQ(ierr);
 ierr = VecGetArrayRead(yy[2],&yy2);CHKERRQ(ierr);
 switch (j_rem=j&0x3) {
 case 3:
 x2 = x[2];
 sum0 += x2*yy0[2]; sum1 += x2*yy1[2];
 sum2 += x2*yy2[2];
 case 2:
 x1 = x[1];
 sum0 += x1*yy0[1]; sum1 += x1*yy1[1];
 sum2 += x1*yy2[1];
 case 1:
 x0 = x[0];
 sum0 += x0*yy0[0]; sum1 += x0*yy1[0];
 sum2 += x0*yy2[0];
 case 0:
 x += j_rem;
 yy0 += j_rem;
 yy1 += j_rem;
 yy2 += j_rem;
 j -= j_rem;
 break;
 }
 while (j>0) {
 x0 = x[0];
 x1 = x[1];
 x2 = x[2];
 x3 = x[3];
 x += 4;

 sum0 += x0*yy0[0] + x1*yy0[1] + x2*yy0[2] + x3*yy0[3]; yy0+=4;
 sum1 += x0*yy1[0] + x1*yy1[1] + x2*yy1[2] + x3*yy1[3]; yy1+=4;
 sum2 += x0*yy2[0] + x1*yy2[1] + x2*yy2[2] + x3*yy2[3]; yy2+=4;
 j -= 4;
 }
 z[0] = sum0;
 z[1] = sum1;
 z[2] = sum2;
 ierr = VecRestoreArrayRead(yy[0],&yy0);CHKERRQ(ierr);
 ierr = VecRestoreArrayRead(yy[1],&yy1);CHKERRQ(ierr);
 ierr = VecRestoreArrayRead(yy[2],&yy2);CHKERRQ(ierr);
 break;
 case 2:
 ierr = VecGetArrayRead(yy[0],&yy0);CHKERRQ(ierr);
 ierr = VecGetArrayRead(yy[1],&yy1);CHKERRQ(ierr);
 switch (j_rem=j&0x3) {
 case 3:
 x2 = x[2];
 sum0 += x2*yy0[2]; sum1 += x2*yy1[2];
 case 2:
 x1 = x[1];
 sum0 += x1*yy0[1]; sum1 += x1*yy1[1];
 case 1:
 x0 = x[0];
 sum0 += x0*yy0[0]; sum1 += x0*yy1[0];
 case 0:
 x += j_rem;
 yy0 += j_rem;
 yy1 += j_rem;

• If we can’t have the dream, what do we really need?

Design Requirements
1. A clean version of the code for the developers. This is the baseline code.
2. The code should run in the absence of any tool, so that the developers are

comfortable that their code will run.
3. A clean way to provide extra semantic information.
4. Code must run with good performance on multiple platforms and architectures.
5. A performance expert must be able to provide additional, possibly target-specific,

information about optimizations.
6. The system must reuse the results of the autotuning step(s) whenever possible.
7. Changes to the baseline code should ensure that “stale” versions of the optimized

code are not used and preferably replaced by updated versions.
8. Hand-tuned optimizations should be allowed.
9. Using (as opposed to creating) the optimized code must not require installing the

code generation and autotuning frameworks.
10. The system should make it possible to gather performance data from a remote

system.

Design Implications
• Our system uses annotated code, written in C, C++, or Fortran, with high-level information that

marks regions of code for optimization (addresses 1 and 2).
• The annotations only cover high-level, platform- independent information (addresses 3).
• Platform and tool-dependent information (e.g., loop-unroll depth) is maintained in a separate

optimization file (addresses 5).
• We maintain a database of optimized code, organized by target platform and other parameters

(addresses 4 and 6).
• The database maintains a hash of the relevant parts of the code for each transformed section

(addresses 7).
• Hand-tuned versions of code may be inserted into the database (addresses 5 and 8).
• The system separates the steps of determining optimized code and populating the database

from extracting code from the database to replace labeled code regions in the baseline version
(addresses 9).

• The system provides some support for running tests on a remote system; especially important
when the target is a supercomputer (addresses 9 and 10).

• Allow hand-optimized version as the default code, with clean baseline in database as source
for transformations (addresses 2).

Locus
• Source code is annotated to define code regions
• Optimization file notation orchestrates the use of

the optimization tools on the code regions
defined

• Interface provides operations on the source
code to invoke optimizations through:

• Adding pragmas
• Adding labels
• Replacing code regions

• These operations are used by the interface to
plug-in optimization tools

• Most tools are source-to-source
• tools must understand output of previous tools

• Joint work with Thiago Teixeira and David
Padua, “Managing Code Transformations for
Better Performance Portability”, IJHPCA, 2019
https://doi.org/10.1177%2F1094342019865606

Se
lec

t o
ne

 po
int

an
d c

on
ve

rt

Conversion

Return

metric

Best sequence
of optimizations

foundSearch
Search Locus

program

Baseline
version

Optimization
space

Direct Locus
program

Optimized
version

Execute/
Assess

applyoperator

navierstokes

.locusdb-xyz

matvec-0-shapeA-1024.var

spmv-1.var

matmul-1-shapeA-1024.var

stencil-0.var

Optimization Process XYZ

Locus

Source Files

Code Region
Variants

Direct Locus
Program

https://doi.org/10.1177%2F1094342019865606

Matrix Multiply Example
• #pragma @LOCUS loop=matmul

for(i=0; i<M; i++)
for(j=0; j<N; j++)

for(k=0; k<K; k++)
C[i][j] = beta*C[i][j] + alpha*A[i][k] * B[k][j];

dim=4096;
Search {
buildcmd = "make clean all";
runcmd = "./matmul";

}
CodeReg matmul {
RoseLocus.Interchange(order=[0,2,1]);
tileI = poweroftwo(2..dim);
tileK = poweroftwo(2..dim);
tileJ = poweroftwo(2..dim);
Pips.Tiling(loop="0", factor=[tileI, tileK, tileJ]);
tileI_2 = poweroftwo(2..tileI);
tileK_2 = poweroftwo(2..tileK);
tileJ_2 = poweroftwo(2..tileJ);
Pips.Tiling(loop="0.0.0.0",

factor=[tileI_2, tileK_2, tileJ_2]);
{
tileI_3 = poweroftwo(2..tileI_2);
tileK_3 = poweroftwo(2..tileK_2);
tileJ_3 = poweroftwo(2..tileJ_2);
Pips.Tiling(loop="0.0.0.0.0.0.0",

factor=[tileI_3, tileK_3, tileJ_3]);
} OR {
None;

}
}

Locus Generated Code
(for specific platform/size)

• #pragma @LOCUS loop=matmul
for(i_t = 0; i_t <= 7; i_t += 1)
for(k_t = 0; k_t <= 3; k_t += 1)
for(j_t = 0; j_t <= 1; j_t += 1)
for(i_t_t = 8 * i_t; i_t_t <= ((8 * i_t) + 7); i_t_t += 1)
for(k_t_t = 256 * k_t; k_t_t <= ((256 * k_t) + 255); k_t_t += 1)
for(j_t_t = 32 * j_t; j_t_t <= ((32 * j_t) + 31); j_t_t += 1)
for(i = 64 * i_t_t; i <= ((64 * i_t_t) + 63); i += 1)
for(k = 4 * k_t_t; k <= ((4 * k_t_t) + 3); k += 1)
for(j = 64 * j_t_t;j <= ((64 * j_t_t) + 63); j += 1)

C[i][j] = beta*C[i][j] + alpha*A[i][k]*B[k][j];

DGEMM by Matrix Size

0.00

0.50

1.00

1.50

2.00

2.50

2048 4096 8192

Sp
ee

du
p

(o
ve

r
XL

C
ba

se
)

Matrices shape (n*n)

DGEMM on IBM Power
XLC base

Locus+XLC 2lt

Locus+XLC 3lt

GCC base

Locus+GCC 2lt

Locus+GCC 3lt

0.00

50.00

100.00

150.00

200.00

250.00

2048 4096

Sp
ee

du
p

(o
ve

r
IC

C
ba

se
)

Matrices Shape (n*n)

DGEMM on Intel x86

ICC base

Locus+ICC 2lt

Locus+ICC 3lt

Intel MKL

• For most processors and regular (e.g., vectorizable) computations
• Memory bandwidth for a chip is much larger than needed by a single core
• Share of memory bandwidth for a core (with all cores accessing memory) is

much smaller than needed to avoid waiting on memory
• Performance tests on a single core can be very misleading

• Example follows
• Can use simple MPI tools to explore dependence on using one to all cores

• See baseenv package
• Ask this question when you review papers J

Tuning Must be in a Representative
Environment

• Common operation for PDE solvers
• Structured are often “matrix free”
• Unstructured and structured mesh stencils have low ”computational intensity” –

number of floating point operations per bytes moved
• Conventional wisdom is that cache blocking and similar optimizations

are ineffective
• For example, “Optimization and Performance Modeling of Stencil Computations

on Modern Microprocessors” argues this, and provides experimental data to
support it

• https://epubs.siam.org/doi/10.1137/070693199 (accepted 2007, published 2009)
• But the analysis and experiments are usually based on one core per

chip/socket
• And the number of cores has grown substantially since 2007
• What if every core is executing a stencil sweep?

Stencil Sweeps

https://epubs.siam.org/doi/10.1137/070693199

Stencil Sweeps

0

1000

2000

3000

4000

5000

6000

7000

8000

1 proc /
socket

Locus 1 p
/ socket

1 proc /
core

Locus 1 p
/ core

2 proc /
core

Locus 2 p
/ core

4 proc /
core

Locus 4 p
/ core

Ag
gr

eg
at

ed
 M

st
en

cil
s/

se
c

3D Heat on IBM Power

0

100

200

300

400

500

600

700

1 proc /
socket

Locus 1 p /
socket

1 proc /
core

Locus 1 p /
core

2 proc /
core

Locus 2 p /
core

Ag
gr

eg
at

ed
 M

st
en

cil
s/

se
c

3D Heat on Intel x86

void heat3d(double A[2][N+2][N+2][N+2]) {
int i, j, t, k;
#pragma @LOCUS loop=heat3d
for(t = 0; t < T-1; t++) {
for(i = 1; i < N+1; i++) {
for(j = 1; j < N+1; j++) {
for (k = 1; k < N+1; k++) {
A[(t+1)%2][i][j][k] = 0.125 * (A[t%2][i+1][j][k] -
2.0 * A[t%2][i][j][k] + A[t%2][i-1][j][k]) + 0.125 * (A[t%2][i][j+1][k]
- 2.0 * A[t%2][i][j][k] + A[t%2][i][j-1][k]) + 0.125 * (A[t%2][i][j][k-
1] - 2.0 * A[t%2][i][j][k] + A[t%2][i][j][k+1]) + A[t%2][i][j][k]; } } } }
}

Often Overlooked – IO Performance Often Terrible
• Applications just assume I/O is

awful and can’t be fixed
• Even simple patterns not handled

well
• Example: read or write a submesh

of an N-dim mesh at an arbitrary
offset in file

• Needed to read input mesh in
PlasComCM. Total I/O time less
than 10% for long science runs
(that is < 15 hours)

• But long init phase makes debugging,
development hard

• Meshio library built to match
application needs

• Replaces many lines in app with a
single collective I/O call

• Meshio
https://github.com/oshkosher/meshio

• Work of Ed Karrels

Original Meshio Speedup

PlasComCM 4500 1 4500

MILC 750 15.6 48

https://github.com/oshkosher/meshio

Just how bad Is current I/O performance?
Sustained
maximum I/O
bandwidth

“A Multiplatform Study of I/O Behavior on Petascale Supercomputers,” Huong Luu, Marianne
Winslett, William Gropp, Robert Ross, Philip Carns, Kevin Harms, Prabhat, Suren Byna, and
Yushu Yao, proceedings of HPDC’15. https://dl.acm.org/citation.cfm?id=2749269

1000X

https://dl.acm.org/citation.cfm?id=2749269

• POSIX I/O has a strong and required consistency model
• Hard to cache effectively
• Applications need to transfer block-aligned and sized data to achieve

performance
• Complexity adds to fragility of file system, the major cause of failures on

large scale HPC systems
• Files as I/O objects add metadata “choke points”

• Serialize operations, even with “independent” files
• Do you know about O_NOATIME ?

What Are Some of the Problems?

• ”Our file system is stable”
• Sometimes (Often?) due to operating in a subset of POSIX semantics
• One National Lab (not LLNL) told me everything is fine with POSIX, but I

also know that they pushed one of our students off the system because that
student kept causing the file system to go down – and that student was
running a correct, POSIX-compliant (but demanding) program

• In some cases, systems turn off POSIX correctness to provide
better performance

• But applications that rely on concurrent writes then may fail, even though
those applications are correct

• Burst buffers will not fix these problems
• Hard to get effective use without changing the semantics of the operations

– which is the common approach

But POSIX Works (Or We Can Fix It)

• Instead of ignoring inconvenient parts of the POSIX specification,
why not consider more modern high performance I/O designs?

• BTW, ignoring parts of POSIX means that you are not using a POSIX file
system – semantics counts

• “Big Data” file systems have very different consistency models and
metadata structures, designed for their application needs

• Why doesn’t HPC?
• There have been some efforts, such as PVFS, but the requirement for POSIX has

held up progress

• Real problem for HPC – user’s “execution model” for I/O far from
reality

What Options Are There?

Remember
• POSIX is not just “open, close, read, and write” (and seek …)

• That’s (mostly) syntax
• POSIX includes strong semantics about concurrent accesses

• Even if such accesses never occur
• POSIX also requires consistent metadata

• Access and update times, size, …

No Science Application Code Needs POSIX I/O
(precisely, no app need POSIX consistency semantics)
• Many are single reader or single

writer
• Eventual consistency is fine

• Some are disjoint reader or writer
• Eventual consistency is fine, but must

correctly handle non-block-aligned writes

• Some applications use the file system
as a simple data base

• Use a data base – we know how to make
these fast and reliable

• Some applications use the file system
to implement interprocess mutex

• Use a mutex service – even MPI point-to-
point

• A few use the file system as a
bulletin board

• May be better off using RDMA (available
in MPI)

• Only need release or eventual
consistency

• Correct Fortran codes do not require
POSIX (in any form)

• Standard requires unique open,
enabling correct and aggressive client
and/or server-side caching

• MPI-IO would be better off without
POSIX (in any form)

• Does not and never has required POSIX

• Most common approach likely to be MPI + X
• What To Use as X in MPI + X?

• Threads and Tasks
• OpenMP, pthreads, TBB, OmpSs, StarPU, …

• Streams (esp for accelerators)
• OpenCL, OpenACC, CUDA, OpenMP v5+, …

• Alternative distributed memory system
• UPC, CAF, Global Arrays, GASPI/GPI

• MPI shared memory

The really hard part – Combining internode and
intranode programming systems

What are the Issues?
• Isn’t the beauty of MPI + X that MPI and X can be learned (by

users) and implemented (by developers) independently?
• Yes (sort of) for users
• No for developers

• MPI and X must either partition or share resources
• User must not blindly oversubscribe
• Developers must enable negotiation in their respective runtime systems

• What can you do now?
• Systems are providing more control of allocation of processes and threads

to nodes, sockets, and cores. Unfortunately, each system is different.
• Be aware of all uses of resources – don’t forget the OS, runtime systems,

monitoring demons, etc.

More Effort needed on the “+”

• MPI+X won’t be enough for Exascale if the work for “+” is
not done very well

• Some of this may be language specification:
• User-provided guidance on resource allocation, e.g., MPI_Info hints; thread-based

endpoints, new APIs
• Some is developer-level standardization

• A simple example is the MPI ABI specification – users should ignore but benefit from
developers supporting

Summary
• Challenges for HPC programming are not just in scale

• Need to achieve extreme power and cost efficiencies puts large demands on the
effectiveness of single core (whatever that means) and single node performance

• MPI remains the most viable internode programming system
• Supports a multiple parallel programming models, including one-sided and shared

memory
• Contains features for “programming in the large” (tools, libraries, frameworks) that

make it particularly appropriate for the internode programming system
• Intranode programming for performance still an unsolved problem

• Lots of possibilities, but adoption remains a problem
• That points to unsolved problems, particularly in integration with large, multilingual codes

• Composition of tools (rather than a single does-everything compiler) a promising
approach

• Parallel I/O increasingly important
• But HPC centers need to change their approach and embrace the “big data” view

• The “flat” execution model (all cores the same regardless of
location) is no longer a good guide for algorithm design or
application development

• Many examples where node-aware methods provide an advantage
• Cartesian topology – better implementation of MPI_Cart_create
• Node-aware Algebraic MultiGrid (AMG) – Raptor library provides significant

speedup over Hypre
• Uses streamline library to simplify using node-aware communication in place of direct

use of MPI isend/irecv/wait
• Faster allreduce – SMP-aware algorithms for MPI collectives reduce to a

master for the node. Node-aware algorithms are more balanced, faster for
shorter (e.g., 1 to a few doubles) operations. See
https://arxiv.org/abs/1910.09650 ; Presented at ExaMPI’19

• Graph partitioning – What is the cost model used in choosing cuts? Most
current methods based on a simple, flat cost model.

Taking Advantage of Intranode Communication

https://arxiv.org/abs/1910.09650

• github.com/cedar-framework/cedar
• Scaling Structured Multigrid to 500K+ Cores through Coarse-Grid Redistribution

Reisner, Olson, Moulton, SISC, 2018
• github.com/raptor-library/raptor

• Node-Aware Sparse Matrix-Vector Communication
Bienz, Gropp, Olson, JPDC, 2019

• Improving Performance Models for Irregular Point-to-Point Communication
Bienz, Gropp, Olson, EuroMPI, 2018.
https://dl.acm.org/citation.cfm?doid=3236367.3236368

• Reducing Communication in Algebraic Multigrid with Multi-step Node Aware
Communication, https://arxiv.org/abs/1904.05838

• github.com/bienz2/Node_Aware_MPI
• github.com/bienz2/streamline

• Node-aware communication library
• Meshio, baseenv, available on request (still development versions)

More Details and Software

https://github.com/cedar-framework/cedar
http://github.com/raptor-library/raptor
https://dl.acm.org/citation.cfm?doid=3236367.3236368
https://arxiv.org/abs/1904.05838
https://github.com/bienz2/Node_Aware_MPI
https://github.com/bienz2/streamline

Thanks!
• Philipp Samfass, Ed Karrels, Amanda Bienz, Paul Eller, Thiago Teixeira, Huong

Luu, Austin Li
• Luke Olson, David Padua
• Rajeev Thakur for runs on Theta
• Torsten Hoefler and Timo Schneider for runs on Piz Daint

• Department of Energy, National Nuclear Security Administration, under Award
Number DE-NA0002374 (PSAAPII – XPACC)

• ExxonMobil Upstream Research
• Blue Waters Sustained Petascale Project, supported by the National Science

Foundation (award number OCI 07–25070) and the state of Illinois.
• Argonne Leadership Computing Facility

