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Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache
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• HPC Focus is typically on scale
• “How will we program a million (or a billion) cores?
• “What can use use to program these machines?”

• This talk focuses on some of the overlooked issues
• Performance models still (mostly) process to process and single core

• Node bottlenecks missed; impacts design from hardware to algorithms
• Dream of “Performance Portability” stands in the way of practical solutions 

to “transportable” performance
• HPC I/O requirements impede performance, hurt reliability

• This talk does not talk about the need for different algorithms for 
different architectures – there is no magic fix

• But some ideas and approaches here can help

Where are the real problems in using HPC Systems?



Programming Models and Systems
• In past, often a tight connection between the execution model and the 

programming approach
• Fortran: FORmula TRANslation to von Neumann machine
• C: e.g., “register”, ++ operator match PDP-11 capabilities, needs

• Over time, execution models and reality changed but programming models 
rarely reflected those changes

• Rely on compiler to “hide” those changes from the user – e.g., auto-vectorization for 
SSE(n)

• Consequence: Mismatch between users’ expectation and system abilities.
• Can’t fully exploit system because user’s mental model of execution does not match real 

hardware
• Decades of compiler research have shown this problem is extremely hard – can’t expect 

system to do everything for you.



The Easy Part – Internode communication
• Often focus on the “scale” in Exascale as the hard part

• How to deal with a million or a billion processes?
• But really not too hard

• Many applications have large regions of regular parallelism
• Or nearly impossible

• If there isn’t enough independent parallelism

• Challenge is in handling definition and operation on distributed data 
structures

• Many solutions for the internode programming piece
• The dominant one in technical computing is the Message Passing Interface 

(MPI)



Modern MPI
• MPI is much more than message passing

• I prefer to call MPI a programming system rather than a programming model
• Because it implements several programming models

• Major features of MPI include
• Rich message passing, with nonblocking, thread safe, and persistent versions
• Rich collective communication methods
• Full-featured one-sided operations

• Many new capabilities over MPI-2
• Include remote atomic update

• Portable access to shared memory on nodes
• Process-based alternative to sharing via threads
• (Relatively) precise semantics

• Effective parallel I/O that is not restricted by POSIX semantics
• But see implementation issues …

• Perhaps most important
• Designed to support “programming in the large” – creation of libraries and tools

• MPI continues to evolve – MPI “next” Draft released at SC in Dallas last November, and 
updated at SC in Denver this year.  See  https://www.mpi-forum.org/docs/drafts/mpi-
2019-draft-report.pdf

https://www.mpi-forum.org/docs/drafts/mpi-2019-draft-report.pdf


Applications Still Mostly MPI-Everywhere
• “the larger jobs (> 4096 nodes) mostly use message passing with 

no threading.” – Blue Waters Workload study, 
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf

• Benefit of programmer-managed locality
• Memory performance nearly stagnant (will HBM save us?)
• Parallelism for performance implies locality must be managed effectively

• Benefit of a single programming system
• Often stated as desirable but with little evidence
• Common to mix Fortran, C, Python, etc.
• But…Interface between systems must work well, and often don’t

• E.g., for MPI+OpenMP, who manages the cores and how is that negotiated?
• Don’t forget the “+” in “MPI + X”!

https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf


MPI On Multicore Nodes
• MPI Everywhere (single core/single thread MPI processes) still common

• Easy to think about
• We have good performance models (or do we?)

• In reality, there are issues
• Memory per core declining

• Need to avoid large regions for data copies, e.g., halo cells
• MPI implementations could share internal table, data structures

• May only be important for extreme scale systems
• MPI Everywhere implicitly assume uniform communication cost model

• Limits algorithms explored, communication optimizations used
• Even here, there is much to do for

• Algorithm designers
• Application implementers
• MPI implementation developers

• One example: Can we use the single core performance model for MPI?
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Why this Behavior?
• The T = s + r n model predicts the same performance independent 

of the number of communicating processes
• What is going on?
• How should we model the time for communication?
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A Slightly Better Model
• For k processes sending messages, the sustained rate is

• min(RNIC-NIC, k RCORE-NIC)
• Thus

• T = s + k n/min(RNIC-NIC, k RCORE-NIC)
• Note if RNIC-NIC is very large (very fast network), this reduces to

• T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC

• This model is approximate; additional terms needed to capture 
effect of shared data paths in node, contention for shared 
resources, etc.

• But this new term is by far the dominant one



Comparison on Cray XE6

Measured Data Max-Rate Model
Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire 
the Ping Pong Test, W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16, 

https://doi.org/10.1145/2966884.2966919

https://doi.org/10.1145/2966884.2966919


InfiniBand Cluster (Taub at Illinois)

(a) Measured data (TCP). (b) Max-rate, three-parameter model (TCP).

(c) Relative error (TCP).

(d) Measured data (IB). (e) Max-rate, three-parameter model (IB).

(f) Relative error (IB).

Figure 3: Aggregate effective bandwidth on the Illinois Taub Cluster with InfiniBand. 1 (bottom line) to 12 (top line)
communicating processing pairs using TCP/MPICH 3.1.3 (top row) and InfiniBand/MVAPICH2.1 (bottom row).

(a) Measured data. (b) Max-rate, three-parameter model.
(c) Relative error.

Figure 4: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.



IBM BG/Q

(a) Measured data (TCP). (b) Max-rate, three-parameter model (TCP).

(c) Relative error (TCP).

(d) Measured data (IB). (e) Max-rate, three-parameter model (IB).

(f) Relative error (IB).

Figure 3: Aggregate effective bandwidth on the Illinois Taub Cluster with InfiniBand. 1 (bottom line) to 12 (top line)
communicating processing pairs using TCP/MPICH 3.1.3 (top row) and InfiniBand/MVAPICH2.1 (bottom row).

(a) Measured data. (b) Max-rate, three-parameter model.
(c) Relative error.

Figure 4: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

(a) Measured data. (b) Modified max-rate model.
(c) Relative error of the model fit.

Figure 5: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

(a) Measured data. (b) Max-rate, three-parameter model.

(c) Relative error.

Figure 6: Aggregate effective bandwidth results the Cisco cluster. The number of communicating pairs increases from bottom
to top.

T=kn/min(RN,kn/(s+n/RC))

Includes message 
overhead (assumes not 
fully overlapped)



Cisco Cluster

(a) Measured data. (b) Modified max-rate model.
(c) Relative error of the model fit.

Figure 5: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

(a) Measured data. (b) Max-rate, three-parameter model.

(c) Relative error.

Figure 6: Aggregate effective bandwidth results the Cisco cluster. The number of communicating pairs increases from bottom
to top.
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Figure 7: Bandwidth rates using mpptest on the Cisco clus-
ter. buflimit identifies the threshold at 25548 bytes.

be identified and different model parameters used in each
regime. While the decision to use eager, rendezvous, or an-
other protocol is up to the MPI implementation (and there
are other choices, such as a eager with a NACK to reject mes-
sages that are too long), most MPI implementations choose
among a few protocols depending on the message length,
and this should be taken into account in algorithm analysis
and design.
As an example of the use of this model in algorithm de-

sign, consider the question of how many processes on a node
should communication at the same time to minimize the
communication time. This requires achieving the maximum
bandwidth out of the node. Using the new model, the min-
imum time is achieved when the number of communication
MPI processes is k = RN/Rc, assuming no communica-
tion/computation overlap.
In summary, we hope the community adopts this model

for communication time as it gives a much more accurate ap-
proximation to the performance of MPI on multicore nodes
and is nearly as easy to use as the venerable postal model.
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MPI Virtual Process Topologies
• Lets user describe some common communication patterns
• Promises

• Better performance (with “reorder” flag true)
• Convenience in describing communication (at least with Cartesian process 

topologies)
• Reality

• “Reorder” for performance rarely implemented
• Few examples include NEC SX series and IBM BlueGene/L

• Challenge to implement in general
• Perfect mapping complex to achieve except in special cases

• And perfect is only WRT the abstraction, not the real system

• Rarely used in benchmarks/applications, so does not perform well, 
so is rarely used in benchmarks/applications



Example Cartesian Process Mesh – Four Nodes
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Can We Do Better?
• Hypothesis: A better process mapping within a node will provide 

significant benefits
• Ignore the internode network topology

• Vendors have argued that their network is fast enough that process mapping isn’t 
necessary

• They may be (almost) right – once data enters the network

• Idea for Cartesian Process Topologies
• Identify nodes (see MPI_Comm_split_type)
• Map processes within a node to minimize internode communication

• Trading intranode for internode communication
• Using Node Information to Implement MPI Cartesian Topologies, Gropp, William D., 

Proceedings of the 25th European MPI Users' Group Meeting, 18:1–18:9, 2018 
https://dl.acm.org/citation.cfm?id=3236377

• Using Node and Socket Information to Implement MPI Cartesian Topologies, Parallel 
Computing, 2019 https://doi.org/10.1016/j.parco.2019.01.001

https://dl.acm.org/citation.cfm?id=3236377
https://doi.org/10.1016/j.parco.2019.01.001


Algorithm
• Find the nodes

• MPI provides a way to split a communicator based on a characteristic; 
MPI_COMM_TYPE_SHARED works on all systems

• Create communicators of (a) all processes on the same node 
(nodecomm) and (b) the 0th process from each node (leadercomm)

• All processes now know number of processes on each node and the number of 
nodes

• Form a 2 (or 3) level decomposition of the process mesh
• Factor dimensions and find consistent pair in each dimension

• From rank in nodecom and leadercomm, compute coordinates in node 
and among nodes. Gives new coordinate in mesh and hence new rank

• Use MPI_Comm_split on this rank to form new Cartesian communicator



Testing the Hypothesis: The Systems
• Blue Waters at Illinois

• Cray XE6/XK7
• 3D mesh (Gemini); service nodes embedded in mesh
• 22,636 XE6 nodes, each with 2 AMD Interlagos (and 4228 XK7 nodes)

• Theta at Argonne
• Cray XC40
• Dragonfly (Aires) interconnect
• 4392 Intel KNL nodes

• Piz Daint at Swiss National Supercomputing Center
• Cray XC50/XC40
• Dragonfly (Aires) interconnect
• 5320 XC50 and 1813 XC40 nodes



Comparing Halo Exchanges
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How Important is Network Topology? 
• No answer yet, but…
• 432 nodes, 3D halo exchange on 

Blue Waters
• Requested a cube of nodes, used 

non-standard routines to implement 
mapping for network topology

• Part of study into scalable Krylov 
methods (looking to avoid the 
blocking MPI_Allreduce)

• Nodecart version provides most of 
the benefit with no need for network 
topology information

• Some (nontrivial) further benefit 
possible by taking network topology 
into account

• But the largest contribution comes 
from node-awareness

• Thanks to Paul Eller for these 
results



Further Refining the Model: SpMV for Algebraic 
Multigrid
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• Intermediate levels if AMG Coarse 
Grid problem require many 
messages

• Model greatly improved with 
queue search time and contention 
parameters

• Queue search time dominates 
cost on coarse levels

• Leads to new algorithm that 
improves performance

• Work of Amanda Bienz et al
https://arxiv.org/abs/1806.02030

https://arxiv.org/abs/1806.02030


Impact of Node-Aware Communication

DG Diffusion

Cost of Ruge-Stuben (RS) and Smoothed Aggregation (SA) AMD compared to Hypre

Work of Amanda Bienz and Luke Olson



Dreams and Reality
• For codes that demand performance (and parallelism almost 

always implies that performance is important enough to justify the 
cost and complexity of parallelism), the dream is performance 
portability

• The reality is that most codes require specialized code to achieve 
high performance, even for non-parallel codes

• A typical refrain is “Let The Compiler Do It”
• This is the right answer …

• If only the compiler could do it
• We have lots of evidence that this problem is unsolved – consider one of 

the most studied kernels – dense matrix-matrix multiply (DGEMM)
• And what about vectorization? 



• Long history of tools and techniques to produce fast code for loops
• Vectorization, streams, etc., dating back nearly 40 years (Cray-1) or more

• Many tools for optimizing loops for both CPUs and GPUs
• Compiler (auto) vectorization, explicit programmer use of directives (e.g., OpenMP or 

OpenACC), lower level expressions (e.g., CUDA, vector intrinsics)
• Is there a clear choice?

• Not for vectorizing compilers (e.g., see S. Maleki, Y. Gao, T. Wong, 
M. Garzarán, and D. Padua, An Evaluation of Vectorizing Compilers.
PACT 2011)

• Probably not for the others
• OpenACC preliminary examples follow

• Vector tests part of baseenv; OpenACC and OpenMP vectorization
tests under development (and some OpenACC examples follow)

• Need to separate description of semantics and operations
from particular programming system choices 

A Simple (?) Problem:
Generating Fast Code for Loops
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• Vectorized: Defined as vector version 10% faster than serial version for a given compiler
• Faster: Defined as the fastest among the compiler choices when compiled with vectorization enabled
• Tests on hal.ncsa.Illinois.edu; November 25th

• Xlc: -O4 -qarch=pwr9 -qtune=pwr9 -qhot -qipa=malloc16 -qdebug=NSIMDCOST -qdebug=alwaysspec -qdebug=NFUSE -qnoinline –
qaltivec

• Gcc: -O3 -fivopts -flax-vector-conversions -funsafe-math-optimizations -mcpu=power9 -mtune=native -maltivec -mpower8-vector

• Note vectorization not a guarantee of faster performance, even for data sets that fit in cache
• All examples can be (at least partially) vectorized

Vectorization on Power9 in 2019

gcc xlc

Vectorized Faster Vectorized Faster
Not 
Vectorized

Both 
Vectorized

double 77 32 45 119 63 34

single 79 40 58 111 56 42



Loop Performance 
range in GF

Single Core 
Vectorized

OpenACC 
multicore

OpenACC tesla 
(loop)

OpenACC tesla 
(kernel)

Single Precision 2.6-16.3 1.1-3.3 394-1420 1.6-1710
Double Precision 1.3-8.2 -- 320-826 1.4-731

Can We Pick One Approach?

• Test system node
• 2 x Power9 (20 cores each) with 4 NVIDIA Tesla V100 GPU; Only 1 GPU used in tests

• Caveats
• Only basic tuning performed (e.g., -O3, -fast)
• Defaults used (almost certainly not full # cores for OpenACC multicore)
• Data resident on GPU for all tests (small data in these examples to benefit vectorization)
• Only 6 simple vector loop tests used here (112 in more complete set)
• Test time variations not included

• Take-aways
• No absolute winner (though explicit OpenACC for these loops is close for GPU – but poor for CPU)
• Can abstract memory domains
• There are common abstractions but no one system is perfect

• If we can’t have the dream, what do we really need?



A Simple Example: Dense Matrix Transpose

• do j=1,n
do i=1,n

b(i,j) = a(j,i)
enddo

enddo
• No temporal locality (data used 

once)
• Spatial locality only if 

(words/cacheline) * n fits in cache

• Performance plummets when matrices no 
longer fit in cache

Perf limit based on 
STREAM

• Lets look at one of the simplest operations for 
a single core, dense matrix transpose

• Only a double loop (fewer options to 
consider)



Blocking for cache helps
• do jj=1,n,stridej    

do ii=1,n,stridei
do j=jj,min(n,jj+stridej-1)

do i=ii,min(n,ii+stridei-1)
b(i,j) = a(j,i)

• Good choices of stridei and 
stridej can improve 
performance by a significant 
factor

• How sensitive is the 
performance to the choices of 
stridei and stridej?

1
2

3
456789

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 4 5 6 7 8 9

1800-2000

1600-1800

1400-1600

1200-1400

1000-1200

800-1000
600-800

400-600

200-400

0-200

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

1500-2000
1000-1500

500-1000

0-500

Simple, unblocked code compiled 
with O3 – 709MB/s



Real Codes Include Performance Workarounds
• Code excerpt from 

VecMDot_Seq in PETSc
• Code is unrolled to provide 

performance
• Decision was made once (and 

verified as worth the effort at the 
time)

• Remains part of the code 
forevermore

• Unroll by 4 probably good for 
vectorization

• But not necessarily best for 
performance

• Does not address alignment

dvec2.c Sat Apr 29 13:29:17 2017 3
      sum2 += x0*PetscConj(yy2[0]); sum3 += x0*PetscConj(yy3[0]);
    case 0:
      x   += j_rem;
      yy0 += j_rem;
      yy1 += j_rem;
      yy2 += j_rem;
      yy3 += j_rem;
      j   -= j_rem;
      break;
    }
    while (j>0) {
      x0 = x[0];
      x1 = x[1];
      x2 = x[2];
      x3 = x[3];
      x += 4;

      sum0 += x0*PetscConj(yy0[0]) + x1*PetscConj(yy0[1]) + x2*PetscConj(yy0[2]) + x3*
PetscConj(yy0[3]); yy0+=4;
      sum1 += x0*PetscConj(yy1[0]) + x1*PetscConj(yy1[1]) + x2*PetscConj(yy1[2]) + x3*
PetscConj(yy1[3]); yy1+=4;
      sum2 += x0*PetscConj(yy2[0]) + x1*PetscConj(yy2[1]) + x2*PetscConj(yy2[2]) + x3*
PetscConj(yy2[3]); yy2+=4;
      sum3 += x0*PetscConj(yy3[0]) + x1*PetscConj(yy3[1]) + x2*PetscConj(yy3[2]) + x3*
PetscConj(yy3[3]); yy3+=4;
      j    -= 4;
    }
    z[0] = sum0;
    z[1] = sum1;
    z[2] = sum2;
    z[3] = sum3;
    z   += 4;
    i   -= 4;
    ierr = VecRestoreArrayRead(yy[0],&yy0);CHKERRQ(ierr);
    ierr = VecRestoreArrayRead(yy[1],&yy1);CHKERRQ(ierr);
    ierr = VecRestoreArrayRead(yy[2],&yy2);CHKERRQ(ierr);
    ierr = VecRestoreArrayRead(yy[3],&yy3);CHKERRQ(ierr);
    yy  += 4;
  }
  ierr = VecRestoreArrayRead(xin,&xbase);CHKERRQ(ierr);
  ierr = PetscLogFlops(PetscMax(nv*(2.0*xin->map->n-1),0.0));CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
#endif

/* ----------------------------------------------------------------------------*/
PetscErrorCode VecMTDot_Seq(Vec xin,PetscInt nv,const Vec yin[],PetscScalar *z)
{
  PetscErrorCode    ierr;
  PetscInt          n = xin->map->n,i,j,nv_rem,j_rem;
  PetscScalar       sum0,sum1,sum2,sum3,x0,x1,x2,x3;
  const PetscScalar *yy0,*yy1,*yy2,*yy3,*x,*xbase;
  Vec               *yy;

  PetscFunctionBegin;
  sum0 = 0.;
  sum1 = 0.;
  sum2 = 0.;

  i      = nv;
  nv_rem = nv&0x3;
  yy     = (Vec*)yin;
  j      = n;
  ierr   = VecGetArrayRead(xin,&xbase);CHKERRQ(ierr);

  x      = xbase;

  switch (nv_rem) {
  case 3:
    ierr = VecGetArrayRead(yy[0],&yy0);CHKERRQ(ierr);
    ierr = VecGetArrayRead(yy[1],&yy1);CHKERRQ(ierr);
    ierr = VecGetArrayRead(yy[2],&yy2);CHKERRQ(ierr);
    switch (j_rem=j&0x3) {
    case 3:
      x2    = x[2];
      sum0 += x2*yy0[2]; sum1 += x2*yy1[2];
      sum2 += x2*yy2[2];
    case 2:
      x1    = x[1];
      sum0 += x1*yy0[1]; sum1 += x1*yy1[1];
      sum2 += x1*yy2[1];
    case 1:
      x0    = x[0];
      sum0 += x0*yy0[0]; sum1 += x0*yy1[0];
      sum2 += x0*yy2[0];
    case 0:
      x   += j_rem;
      yy0 += j_rem;
      yy1 += j_rem;
      yy2 += j_rem;
      j   -= j_rem;
      break;
    }
    while (j>0) {
      x0 = x[0];
      x1 = x[1];
      x2 = x[2];
      x3 = x[3];
      x += 4;

      sum0 += x0*yy0[0] + x1*yy0[1] + x2*yy0[2] + x3*yy0[3]; yy0+=4;
      sum1 += x0*yy1[0] + x1*yy1[1] + x2*yy1[2] + x3*yy1[3]; yy1+=4;
      sum2 += x0*yy2[0] + x1*yy2[1] + x2*yy2[2] + x3*yy2[3]; yy2+=4;
      j    -= 4;
    }
    z[0] = sum0;
    z[1] = sum1;
    z[2] = sum2;
    ierr = VecRestoreArrayRead(yy[0],&yy0);CHKERRQ(ierr);
    ierr = VecRestoreArrayRead(yy[1],&yy1);CHKERRQ(ierr);
    ierr = VecRestoreArrayRead(yy[2],&yy2);CHKERRQ(ierr);
    break;
  case 2:
    ierr = VecGetArrayRead(yy[0],&yy0);CHKERRQ(ierr);
    ierr = VecGetArrayRead(yy[1],&yy1);CHKERRQ(ierr);
    switch (j_rem=j&0x3) {
    case 3:
      x2    = x[2];
      sum0 += x2*yy0[2]; sum1 += x2*yy1[2];
    case 2:
      x1    = x[1];
      sum0 += x1*yy0[1]; sum1 += x1*yy1[1];
    case 1:
      x0    = x[0];
      sum0 += x0*yy0[0]; sum1 += x0*yy1[0];
    case 0:
      x   += j_rem;
      yy0 += j_rem;
      yy1 += j_rem;

• If we can’t have the dream, what do we really need?



Design Requirements
1. A clean version of the code for the developers. This is the baseline code. 
2. The code should run in the absence of any tool, so that the developers are 

comfortable that their code will run. 
3. A clean way to provide extra semantic information. 
4. Code must run with good performance on multiple platforms and architectures. 
5. A performance expert must be able to provide additional, possibly target-specific, 

information about optimizations. 
6. The system must reuse the results of the autotuning step(s) whenever possible. 
7. Changes to the baseline code should ensure that “stale” versions of the optimized 

code are not used and preferably replaced by updated versions. 
8. Hand-tuned optimizations should be allowed.
9. Using (as opposed to creating) the optimized code must not require installing the 

code generation and autotuning frameworks.
10. The system should make it possible to gather performance data from a remote 

system. 



Design Implications
• Our system uses annotated code, written in C, C++, or Fortran, with high-level information that 

marks regions of code for optimization (addresses 1 and 2). 
• The annotations only cover high-level, platform- independent information (addresses 3). 
• Platform and tool-dependent information (e.g., loop-unroll depth) is maintained in a separate 

optimization file (addresses 5). 
• We maintain a database of optimized code, organized by target platform and other parameters 

(addresses 4 and 6). 
• The database maintains a hash of the relevant parts of the code for each transformed section 

(addresses 7). 
• Hand-tuned versions of code may be inserted into the database (addresses 5 and 8). 
• The system separates the steps of determining optimized code and populating the database 

from extracting code from the database to replace labeled code regions in the baseline version 
(addresses 9).

• The system provides some support for running tests on a remote system; especially important 
when the target is a supercomputer (addresses 9 and 10). 

• Allow hand-optimized version as the default code, with clean baseline in database as source 
for transformations (addresses 2).



Locus
• Source code is annotated to define code regions
• Optimization file notation orchestrates the use of 

the optimization tools on the code regions 
defined

• Interface provides operations on the source 
code to invoke optimizations through:

• Adding pragmas
• Adding labels
• Replacing code regions

• These operations are used by the interface to 
plug-in optimization tools

• Most tools are source-to-source
• tools must understand output of previous tools

• Joint work with Thiago Teixeira and David 
Padua, “Managing Code Transformations for 
Better Performance Portability”, IJHPCA, 2019 
https://doi.org/10.1177%2F1094342019865606
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Matrix Multiply Example
• #pragma @LOCUS loop=matmul

for(i=0; i<M; i++)
for(j=0; j<N; j++) 

for(k=0; k<K; k++)
C[i][j] = beta*C[i][j] + alpha*A[i][k] * B[k][j];

dim=4096;
Search {
buildcmd = "make clean all";
runcmd = "./matmul";

}
CodeReg matmul {
RoseLocus.Interchange(order=[0,2,1]);
tileI = poweroftwo(2..dim);
tileK = poweroftwo(2..dim);
tileJ = poweroftwo(2..dim);
Pips.Tiling(loop="0", factor=[tileI, tileK, tileJ]);
tileI_2 = poweroftwo(2..tileI);
tileK_2 = poweroftwo(2..tileK);
tileJ_2 = poweroftwo(2..tileJ);
Pips.Tiling(loop="0.0.0.0",

factor=[tileI_2, tileK_2, tileJ_2]);
{
tileI_3 = poweroftwo(2..tileI_2);
tileK_3 = poweroftwo(2..tileK_2);
tileJ_3 = poweroftwo(2..tileJ_2);
Pips.Tiling(loop="0.0.0.0.0.0.0",

factor=[tileI_3, tileK_3, tileJ_3]);
} OR {
None;

}
}



Locus Generated Code
(for specific platform/size)

• #pragma @LOCUS loop=matmul
for(i_t = 0; i_t <= 7; i_t += 1)
for(k_t = 0; k_t <= 3; k_t += 1)
for(j_t = 0; j_t <= 1; j_t += 1)
for(i_t_t = 8 * i_t; i_t_t <= ((8 * i_t) + 7); i_t_t += 1) 
for(k_t_t = 256 * k_t; k_t_t <= ((256 * k_t) + 255); k_t_t += 1) 
for(j_t_t = 32 * j_t; j_t_t <= ((32 * j_t) + 31); j_t_t += 1)
for(i = 64 * i_t_t; i <= ((64 * i_t_t) + 63); i += 1)
for(k = 4 * k_t_t; k <= ((4 * k_t_t) + 3); k += 1)
for(j = 64 * j_t_t;j <= ((64 * j_t_t) + 63); j += 1)

C[i][j] = beta*C[i][j] + alpha*A[i][k]*B[k][j]; 



DGEMM by Matrix Size
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• For most processors and regular (e.g., vectorizable) computations
• Memory bandwidth for a chip is much larger than needed by a single core
• Share of memory bandwidth for a core (with all cores accessing memory) is 

much smaller than needed to avoid waiting on memory
• Performance tests on a single core can be very misleading

• Example follows
• Can use simple MPI tools to explore dependence on using one to all cores

• See baseenv package
• Ask this question when you review papers J

Tuning Must be in a Representative 
Environment



• Common operation for PDE solvers
• Structured are often “matrix free”
• Unstructured and structured mesh stencils have low ”computational intensity” –

number of floating point operations per bytes moved
• Conventional wisdom is that cache blocking and similar optimizations 

are ineffective
• For example, “Optimization and Performance Modeling of Stencil Computations 

on Modern Microprocessors” argues this, and provides experimental data to 
support it

• https://epubs.siam.org/doi/10.1137/070693199 (accepted 2007, published 2009)
• But the analysis and experiments are usually based on one core per 

chip/socket
• And the number of cores has grown substantially since 2007
• What if every core is executing a stencil sweep? 

Stencil Sweeps

https://epubs.siam.org/doi/10.1137/070693199


Stencil Sweeps
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3D Heat on Intel x86  

void heat3d(double A[2][N+2][N+2][N+2]) { 
int i, j, t, k; 
#pragma @LOCUS loop=heat3d 
for(t = 0; t < T-1; t++) { 
for(i = 1; i < N+1; i++) { 
for(j = 1; j < N+1; j++) { 
for (k = 1; k < N+1; k++) { 
A[(t+1)%2][i][j][k] = 0.125 * (A[t%2][i+1][j][k] -
2.0 * A[t%2][i][j][k] + A[t%2][i-1][j][k]) + 0.125 * (A[t%2][i][j+1][k] 
- 2.0 * A[t%2][i][j][k] + A[t%2][i][j-1][k]) + 0.125 * (A[t%2][i][j][k-
1] - 2.0 * A[t%2][i][j][k] + A[t%2][i][j][k+1]) + A[t%2][i][j][k]; } } } }
}



Often Overlooked – IO Performance Often Terrible
• Applications just assume I/O is 

awful and can’t be fixed
• Even simple patterns not handled 

well
• Example: read or write a submesh

of an N-dim mesh at an arbitrary 
offset in file

• Needed to read input mesh in 
PlasComCM.  Total I/O time less 
than 10% for long science runs 
(that is < 15 hours)

• But long init phase makes debugging, 
development hard

• Meshio library built to match 
application needs

• Replaces many lines in app with a 
single collective I/O call

• Meshio
https://github.com/oshkosher/meshio

• Work of Ed Karrels

Original Meshio Speedup

PlasComCM 4500 1 4500

MILC 750 15.6 48

https://github.com/oshkosher/meshio


Just how bad Is current I/O performance?
Sustained 
maximum I/O 
bandwidth

“A Multiplatform Study of I/O Behavior on Petascale Supercomputers,” Huong Luu, Marianne 
Winslett, William Gropp, Robert Ross, Philip Carns, Kevin Harms, Prabhat, Suren Byna, and 
Yushu Yao, proceedings of HPDC’15. https://dl.acm.org/citation.cfm?id=2749269

1000X

https://dl.acm.org/citation.cfm?id=2749269


• POSIX I/O has a strong and required consistency model
• Hard to cache effectively
• Applications need to transfer block-aligned and sized data to achieve 

performance
• Complexity adds to fragility of file system, the major cause of failures on 

large scale HPC systems
• Files as I/O objects add metadata “choke points”

• Serialize operations, even with “independent” files
• Do you know about O_NOATIME ?

What Are Some of the Problems?



• ”Our file system is stable”
• Sometimes (Often?) due to operating in a subset of POSIX semantics
• One National Lab (not LLNL) told me everything is fine with POSIX, but I 

also know that they pushed one of our students off the system because that 
student kept causing the file system to go down – and that student was 
running a correct, POSIX-compliant (but demanding) program

• In some cases, systems turn off POSIX correctness to provide 
better performance

• But applications that rely on concurrent writes then may fail, even though 
those applications are correct

• Burst buffers will not fix these problems
• Hard to get effective use without changing the semantics of the operations 

– which is the common approach

But POSIX Works (Or We Can Fix It)



• Instead of ignoring inconvenient parts of the POSIX specification, 
why not consider more modern high performance I/O designs?

• BTW, ignoring parts of POSIX means that you are not using a POSIX file 
system – semantics counts

• “Big Data” file systems have very different consistency models and 
metadata structures, designed for their application needs

• Why doesn’t HPC?
• There have been some efforts, such as PVFS, but the requirement for POSIX has 

held up progress

• Real problem for HPC – user’s “execution model” for I/O far from 
reality

What Options Are There?



Remember
• POSIX is not just “open, close, read, and write” (and seek …)

• That’s (mostly) syntax
• POSIX includes strong semantics about concurrent accesses

• Even if such accesses never occur
• POSIX also requires consistent metadata

• Access and update times, size, …



No Science Application Code Needs POSIX I/O
(precisely, no app need POSIX consistency semantics)
• Many are single reader or single 

writer
• Eventual consistency is fine

• Some are disjoint reader or writer
• Eventual consistency is fine, but must 

correctly handle non-block-aligned writes

• Some applications use the file system 
as a simple data base

• Use a data base – we know how to make 
these fast and reliable

• Some applications use the file system 
to implement interprocess mutex

• Use a mutex service – even MPI point-to-
point

• A few use the file system as a 
bulletin board

• May be better off using RDMA (available 
in MPI)

• Only need release or eventual 
consistency

• Correct Fortran codes do not require 
POSIX (in any form)

• Standard requires unique open, 
enabling correct and aggressive client 
and/or server-side caching

• MPI-IO would be better off without 
POSIX (in any form)

• Does not and never has required POSIX



• Most common approach likely to be MPI + X
• What To Use as X in MPI + X?

• Threads and Tasks
• OpenMP, pthreads, TBB, OmpSs, StarPU, …

• Streams (esp for accelerators)
• OpenCL, OpenACC, CUDA, OpenMP v5+, …

• Alternative distributed memory system
• UPC, CAF, Global Arrays, GASPI/GPI

• MPI shared memory

The really hard part – Combining internode and 
intranode programming systems



What are the Issues?
• Isn’t the beauty of MPI + X that MPI and X can be learned (by 

users) and implemented (by developers) independently?
• Yes (sort of) for users
• No for developers

• MPI and X must either partition or share resources
• User must not blindly oversubscribe
• Developers must enable negotiation in their respective runtime systems

• What can you do now?
• Systems are providing more control of allocation of processes and threads 

to nodes, sockets, and cores. Unfortunately, each system is different.
• Be aware of all uses of resources – don’t forget the OS, runtime systems, 

monitoring demons, etc.



More Effort needed on the “+”

• MPI+X won’t be enough for Exascale if the work for “+” is 
not done very well

• Some of this may be language specification:
• User-provided guidance on resource allocation, e.g., MPI_Info hints; thread-based 

endpoints, new APIs
• Some is developer-level standardization

• A simple example is the MPI ABI specification – users should ignore but benefit from 
developers supporting



Summary
• Challenges for HPC programming are not just in scale

• Need to achieve extreme power and cost efficiencies puts large demands on the 
effectiveness of single core (whatever that means) and single node performance

• MPI remains the most viable internode programming system
• Supports a multiple parallel programming models, including one-sided and shared 

memory
• Contains features for “programming in the large” (tools, libraries, frameworks) that 

make it particularly appropriate for the internode programming system
• Intranode programming for performance still an unsolved problem

• Lots of possibilities, but adoption remains a problem
• That points to unsolved problems, particularly in integration with large, multilingual codes

• Composition of tools (rather than a single does-everything compiler) a promising 
approach

• Parallel I/O increasingly important
• But HPC centers need to change their approach and embrace the “big data” view



• The “flat” execution model (all cores the same regardless of 
location) is no longer a good guide for algorithm design or 
application development

• Many examples where node-aware methods provide an advantage
• Cartesian topology – better implementation of MPI_Cart_create
• Node-aware Algebraic MultiGrid (AMG) – Raptor library provides significant 

speedup over Hypre
• Uses streamline library to simplify using node-aware communication in place of direct 

use of MPI isend/irecv/wait
• Faster allreduce – SMP-aware algorithms for MPI collectives reduce to a 

master for the node. Node-aware algorithms are more balanced, faster for 
shorter (e.g., 1 to a few doubles) operations. See 
https://arxiv.org/abs/1910.09650 ; Presented at ExaMPI’19

• Graph partitioning – What is the cost model used in choosing cuts? Most 
current methods based on a simple, flat cost model.

Taking Advantage of Intranode Communication

https://arxiv.org/abs/1910.09650


• github.com/cedar-framework/cedar
• Scaling Structured Multigrid to 500K+ Cores through Coarse-Grid Redistribution

Reisner, Olson, Moulton, SISC, 2018
• github.com/raptor-library/raptor

• Node-Aware Sparse Matrix-Vector Communication
Bienz, Gropp, Olson, JPDC, 2019

• Improving Performance Models for Irregular Point-to-Point Communication
Bienz, Gropp, Olson, EuroMPI, 2018. 
https://dl.acm.org/citation.cfm?doid=3236367.3236368

• Reducing Communication in Algebraic Multigrid with Multi-step Node Aware 
Communication, https://arxiv.org/abs/1904.05838

• github.com/bienz2/Node_Aware_MPI
• github.com/bienz2/streamline

• Node-aware communication library
• Meshio, baseenv, available on request (still development versions)

More Details and Software

https://github.com/cedar-framework/cedar
http://github.com/raptor-library/raptor
https://dl.acm.org/citation.cfm?doid=3236367.3236368
https://arxiv.org/abs/1904.05838
https://github.com/bienz2/Node_Aware_MPI
https://github.com/bienz2/streamline
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