
Achieving High Performance
with Node-Aware Algorithms

William Gropp
wgropp.cs.Illinois.edu

HPC Nodes are Increasingly Complex

DOE Sierra
• Power 9 with 4 NVIDA

Volta GPU
• 4320 nodes
DOE Summit similar, but
• 6 NVIDIA GPUs/node
• 4608 nodes

Fugaku
• Fujitsu A64FX (includes

Vector Extensions)
• 158,976 (+) nodes

DOE Frontier
• AMD with 4 AMD

GPU
• 100+ racks

NCSA Delta similar but
NVIDIA GPUs and
fewer racks J

DOE Aurora
• Intel SR with 6

Intel Ponte
Vecchio GPUs

• Being deployed,
>9K nodes

Hardware Implications For Programs
• Heterogeneity in many ways

• Processor – complex compute modes with scalar and vector
• Many (but not all) include separate accelerators (GPUs and others)
• Memory – Cache was bad enough; now HBM, other
• I/O – Burst buffers (often violating POSIX semantics), on node, central, remote

(cloud)
• For algorithm developer and programmer, the issue is Performance

Heterogeneity
• Whether the implementation uses more than one chip(let) isn’t the issue – can you

see performance impact of the different elements?
• Even vectorization counts as performance heterogeneity in this view

• Compilers still not great at vectorizing code, and often algorithmic changes needed to take
full advantage of vectorization (which specializes code, makes it hard to reason about
performance)

• Impacts algorithm choice and program realization

Algorithm Considerations
• Start with the choice of mathematical model/numerical method

• E.g., higher-order approximations for finite difference/element/volume trade
floating point operations, data motion, and data size

• Higher level choices can provide better locality
• E.g., nonlinear Schwarz, with “local” nonlinear solves

• Performance models needed to guide algorithm design/choice
• Model does not need to be precise – just good enough to guide
• This is fortunate, as highly accurate performance models are very difficult to

create and validate
• But they need to be accurate enough – and many models haven’t kept up with the

evolution of architectures
• One Example: Node-aware algorithms

• Performance model captures basic system hierarchy at node level
• Avoid redundant data copies; optimize data motion for HW characteristics
• Suggests a different approach for process topology mapping…

MPI On Multicore Nodes
• MPI Everywhere (single core/single thread MPI processes) still common

• Easy to think about
• We have good performance models (or do we?)

• In reality, there are issues
• Memory per core declining

• Need to avoid large regions for data copies, e.g., halo cells
• MPI implementations could share internal table, data structures

• May only be important for extreme scale systems
• MPI Everywhere implicitly assume uniform communication cost model

• Limits algorithms explored, communication optimizations used
• Even here, there is much to do for

• Algorithm designers
• Application implementers
• MPI implementation developers

• One example: Can we use the single core performance model for MPI?
• T = s + r n
• Widely used and effective for designing parallel algorithms
• Similar issues with logP, other models.

Rates Per MPI Process
• Ping-pong between 2

nodes using 1-16
cores on each node

• Top is BG/Q, bottom
Cray XE6

• “Classic” model
predicts a single curve
– rates independent of
the number of
communicating
processes

B
an

dw
id

th
B

an
dw

id
th

Rates Per MPI Process: 128 cores
• Increasing core count makes

the situation more complex
• Note roughly similar behavior

for first 32 processes
• 1 process / core
• 64 cores/socket

• As before, classic model
predicts a single curve – rate
depends only on length,
independent of number of
communicating processes

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1 10 100 1000 10000 100000

Rate for Process Pairs

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1 10 100 1000 10000 100000

Rate for Process Pairs (first 32 processes)

Why this Behavior?
• The T = s + r n model predicts the same performance independent

of the number of communicating processes
• What is going on?
• How should we model the time for communication?

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

A Slightly Better Model
• For k processes sending messages, the sustained rate is

• min(RNIC-NIC, k RCORE-NIC)
• Thus

• T = s + k n/min(RNIC-NIC, k RCORE-NIC)
• Note if RNIC-NIC is very large (very fast network), this reduces to

• T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC

• This model is approximate; additional terms needed to capture effect of
shared data paths in node, contention for shared resources, etc.

• But this new term is by far the dominant one
• This is the max-rate model (for performance limited by the maximum

available bandwidth)
• Logp model has a similar limitation and needs a similar modification

Comparison on Cray XE6

Measured Data Max-Rate Model
Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire
the Ping Pong Test, W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16,

https://doi.org/10.1145/2966884.2966919

https://doi.org/10.1145/2966884.2966919

Performance Model to Algorithm
• Performance measurements of halo

exchange show poor communication
performance

• Bandwidth per process low relative to “ping
pong” measurements

• Easy target – blame contention in the network
• But common default mapping of processes

to nodes leads to more off-node
communication

• The max rate model predicts reduced
performance once RNIC-NIC limit reached

• We can use this to create a better, and
simpler, implementation of MPI_Cart_create

0 1

4 5

2 3

6 7

8 9

1
2

1
3

1
0

1
1

1
4

1
5

0 1

2 3

4 5

6 7

8 9

1
0

1
1

1
2

1
3

1
4

1
5

D
es

ire
d

Ty
pi

ca
l P

ro
ce

ss
 M

ap
pi

ng

Building A Better MPI_Cart_create
• Hypothesis: A better process mapping within a node will provide

significant benefits
• Ignore the internode network topology

• Vendors have argued that their network is fast enough that process mapping isn’t
necessary

• They may be (almost) right – once data enters the network

• Idea for Cartesian Process Topologies
• Identify nodes (see MPI_Comm_split_type)
• Map processes within a node to minimize internode communication

• Trading intranode for internode communication
• Using Node Information to Implement MPI Cartesian Topologies, Gropp, William D.,

Proceedings of the 25th European MPI Users' Group Meeting, 18:1–18:9, 2018
https://dl.acm.org/citation.cfm?id=3236377

• Using Node and Socket Information to Implement MPI Cartesian Topologies, Parallel
Computing, 2019 https://doi.org/10.1016/j.parco.2019.01.001

https://dl.acm.org/citation.cfm?id=3236377
https://doi.org/10.1016/j.parco.2019.01.001

Increasing Core Count Makes Proper Mapping
More Important
• Cartesian mapping on Delta

• CPU nodes have 2 AMD Milan x 64
cores each (GPU nodes have 1 AMD
Milan and 4 A100 or A40 NVIDEA GPUs)

• Slingshot network (mostly – NIC update
coming)

• Performance in B/s (higher is better)
• Default mapping provides poor

performance
• Cart is MPI_Cart_create – also

MPI_COMM_WORLD
• Nodec uses node-awareness, inspired by

max-rate model
• Nodech extends to socket (3-level)

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

8.00E+08

0 10000 20000 30000 40000 50000 60000 70000

2D Mesh

cart rate nodec rate nodech rate

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

0 10000 20000 30000 40000 50000 60000 70000

3D Mesh

cart rate nodec rate nodech rate

How Important is Network Topology?
• No answer yet, but…
• 432 nodes, 3D halo exchange on

Blue Waters
• Requested a cube of nodes, used

non-standard routines to implement
mapping for network topology

• Part of study into scalable Krylov
methods (looking to avoid the
blocking MPI_Allreduce)

• Nodecart version provides most of
the benefit with no need for
network topology information

• Some (nontrivial) further benefit
possible by taking network
topology into account

• But the largest contribution comes
from node-awareness

• Thanks to Paul Eller for these
results

Node Aware Algorithms
• Can use max rate model to design better algorithms

for SpMV, related operations
• May need to add additional terms – as in queue search

overhead
• May have unexpected results – e.g., MPI Direct from

GPU not always best on multicore nodes (upcoming
paper with Lockhart, Bienz, and Olson)

• Work with Amanda Bienz, Shelby Lockhart, Luke
Olson

• Amanda Bienz, William D. Gropp, and Luke N. Olson. Node aware sparse matrix–vector
multiplication. Journal of Parallel and Distributed Computing, 130:166–178, 2019.

• A. Bienz, L. Olson, and W. Gropp. Node-aware improvements to allreduce. In 2019
IEEE/ACM Workshop on Exascale MPI (ExaMPI), pages 19–28, Nov 2019.

• Amanda Bienz, Luke N. Olson, William D. Gropp, and Shelby Lockhart. Modeling data
movement performance on heterogeneous architectures. In 2021 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–7, 2021.

0 1 2 3 4 5 6
Level in AMG Hierarchy

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

T
im

e
(s

ec
on

ds
)

Measured

Max-Rate

Queue Search

Contention

Summary
• Need to enable algorithm development

• Great to see so many talks at this meeting embracing the need to match
algorithms to real hardware – and take advantage of specialization

• As others have stated, need the “right” performance model to drive
algorithm design

• Max-rate model can guide some node-aware algorithms
• <something about extensions to multiGPU nodes>

