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Some Context
• Before MPI, there was chaos – many systems, but mostly different 

names for similar functions. 
• Even worse – similar but not identical semantics

• Same time(ish) as attack of the killer micros
• Single core per node for almost all systems

• Era of rapid performance increases due to Dennard scaling
• Most users could just wait for their codes to get faster on the next generation 

hardware
• MPI benefitted from a stable hardware and thus software environment

• Node programming changed slowly, mostly due to slow quantitative changes in cache, 
instruction sets (e.g., new vector instructions)

• The end of Dennard scaling unleashed architectural innovation
• And imperatives – more performance requires exploiting

parallelism or specialized architectures
• (Finally) innovation in memory – at least for bandwidth



HPC Nodes are Increasingly Complex

DOE Sierra
• Power 9 with 4 NVIDIA 

Volta GPU
• 4320 nodes
DOE Summit similar, but
• 6 NVIDIA GPUs/node
• 4608 nodes

Fugaku
• Fujitsu A64FX (includes 

Vector Extensions)
• 158,976 (+) nodes

DOE Frontier
• AMD with 4 AMD 

GPU
• 100+ racks

NCSA Delta similar but 
NVIDIA GPUs and 
fewer racks J

DOE Aurora
• Intel SR with 6 

Intel Ponte 
Vecchio GPUs

• Being deployed, 
>9K nodes



CFD in 2030: NASA Study

Compare 2023 prediction to actual systems in 2022
• Not bad – if “processor” includes GPU, change to 8/node and 10k/system. 
• PIM – stands in for HBM with operations. Maybe a miss (or not?)

• Note that PIM still not a dominant part
• DP performance of an NVIDIA A100 is 9.7TF (19.5TF tensor core) – not too far from 

“Processor”
• Missed – Assumed tighter integration – “Stream” flops part of processor, not in a 

separate socket (GPU)
• Jeffrey P Slotnick, Abdollah Khodadoust, Juan J Alonso, David L Darmofal, William D Gropp, Elizabeth A Lurie, 

Dimitri J Mavriplis, and Venkat Venkatakrishnan. Enabling the environmentally clean air transportation of the 
future: a vision of computational fluid dynamics in 2030. Philosophical Transactions of the Royal Society A: 
Mathematical, Physical and Engineering Sciences, 372(2022), 2014.  

Year Feature 
size

Derived 
parallelism

Stream 
parallelsim

PIM 
Parallelism

Clock 
rate 
GHz

FMAs GFLOPS 
(Scalar)

GFLOPS 
(Stream)

GFLOPS 
(PIM)

Processor 
per node

Processor 
(TFLOP) 

nodes per 
system

Total 
(PFLOPS)

2012 22 16 512 0 2 2 128 1024 0 2 1 10000 23
2020 12 54 1721 0 2.8 4 1210 4819 0 2 6 20000 241
2023 8 122 3873 512 3.1 4 3026 12006 1587 4 17 20000 1330
2030 4 486 15489 1024 4 8 31104 61956 8192 16 101 20000 32401

Prediction in 2012 (published 2014)



Why Was MPI Successful?
• It addresses all of the following issues:

• Portability
• Performance
• Simplicity and Symmetry
• Modularity
• Composability
• Completeness

• For a more complete discussion, see “Learning from the Success 
of MPI”, 

• https://link.springer.com/chapter/10.1007/3-540-45307-5_8

http://wgropp.cs.illinois.edu/bib/papers/pdata/2001/mpi-lessons.pdf


Performance vs. Productivity
• MPI gives the tools for achieving performance

• In large part by not getting in the way of locality management
• But that very feature impacts productivity

• User has no choice but to manage locality, which is both hard and tricky
• In addition, as Marc Snir has noted, MPI is neither high nor low 

level
• But is that part of MPI’s success – it does both high and low level, 

and the tradeoff in greater use (mostly) makes up for loss of 
performance/function

• Any programming system will need to consider the tradeoffs of
• Latency vs. Bandwidth vs. Convenience vs. Modularity (among others)



But What about the Programming Crisis?
• Use the right tools!
• MPI tries to satisfy everyone, but the real strengths are in

• Attention to performance and scalability
• Support for libraries and tools

• Many computational scientists use frameworks and libraries built 
upon MPI

• This is the right answer for most people
• Saying that MPI is the problem is like saying C (or C++) is the problem, and 

if we just eliminated MPI (or C or C++) in favor of a high productivity 
framework everyone’s problems would be solved

• In some ways, MPI is too usable – many people can get their work done 
with it, which has reduced the market for other tools

• Particularly when those tools don’t satisfy the 6 features in the success of MPI



What Might Be Next
• Intranode considerations

• SMPs (but with multiple coherence domains); new memory architectures
• Accelerators, customized processors (custom probably necessary for 

power efficiency)
• MPI can be used (MPI+MPI or MPI everywhere), but somewhat tortured

• No implementation built to support SIMD on SMP, no sharing of data structures or 
coordinated use of the interconnect

• Internode considerations
• Networks supporting RDMA, remote atomics, even message matching 

(partially supported in MPI now – but what’s next?)
• Overheads of ordering
• Reliability (who is best positioned to recover from an error)



What Might Be Next
• MPI is both high and low level – can we resolve this?
• Challenges and Directions

• Scaling at fixed (or declining) memory per node
• How many MPI processes per node is “right”?

• Realistic fault model that doesn’t guarantee state after a fault
• Support for complex memory models (MPI_Get_address J )
• Support for applications requiring strong scaling

• Implies very low latency interface and overheads
• Low latency means paying close attention to the implementation

• RMA latencies sometimes 10-100x point-to-point in implementations (!)
• MPI performance in MPI_THREAD_MULTIPLE mode
• Integration with code re-writing and JIT systems as an alternative to a full 

language



Adapt to Innovation in Architecture
• Complex nodes

• MPI + X, for X such as OpenMP, CUDA, OpenACC, etc. often effective
• But challenges in the “+”: sharing of resources such as cores, memory, …

• Implementation of MPI on complex nodes
• Sharing information between MPI processes on the same node that must 

share resources, such as memory, network, accelerators, …
• Optimize data movement

• Some can be hidden from the user (shared memory for intranode 
message passing)

• Some requires user action – e.g., node-aware algorithms and 
methods



Adapt to New Language Models – And to Their 
Rapid Evolution
• Is (long-term) backward compatibility still important?

• Many newer languages and systems don’t think so – 5 years is long for 
them

• How does the value of backward compatibility change with age?
• As older codes become less important (or more modern codes become 

available), what is the tradeoff in making newer codes more 
capable/flexible/etc. or the environment more productive?

• What is the cost to future applications and usage from providing 
backward compatibility?

• Many of us started careers when long-term backward compatibility was 
expected. Is this still the right thing?

• What does this mean for MPI?



MPI and I/O
• One area where the the technology is changing despite HPC is I/O

• POSIX I/O never designed to support parallel applications
• Does define behavior of concurrent writers, readers

• High performance with POSIX I/O challenging
• Lots of state (e.g., access times, permissions), hierarchical file structure
• Reflected in concerns about “metadata” impacting performance and stability

• Apps that say they requires POSIX almost always mean
• I can’t/won’t change my code, which uses read/write/open/close
• Almost never depend on full POSIX semantics
• That is, they do not need POSIX – and some HPC centers 

• Modern “big data” systems are not based on POSIX
• “Object store” decouples where data is stored from high-level information about how 

data relationships are organized



MPI I/O
• Essential features

• Whole job I/O (communicator scope)
• Efficient mapping of data from MPI processes to storage object (“file”)
• Relaxed consistency model
• Very limited metadata requirements

• Implementation Issues
• POSIX a poor match to MPI I/O – overly strong consistency model, defines 

behavior of individual processes, not parallel application
• HPC sites still focus on POSIX
• Thread interactions – why not have the user put thread-same MPI calls into a 

thread to obtain non-blocking actions?
• Opportunities

• Database
• Coordination with storage APIs to match needs of MPI applications



MPI I/O and POSIX
• MPI I/O designed to be high performance

• Relaxed consistency encourages data caching, optimization of data transfers – even between MPI 
processes

• Use MPI datatypes to describe arbitrary data access patterns
• Reduces number of routine calls to describe data motion

• Collective open informs file system that multiple processes are coordinating I/O activity
• Almost no file metadata requirements

• POSIX I/O supports none of these performance features
• This has been true and recognized since MPI-IO added to MPI (1997)
• MPI never required POSIX I/O – and in fact POSIX I/O has been detrimental to MPI I/O and scientific 

application performance
• POSIX I/O not designed for parallel science applications

• Modern systems have more complex I/O hardware
• Node and server SSD
• Non HPC systems do not use POSIX I/O 
• Some (many) HPC systems do not provide POSIX, but claim to

• “turn off” consistency or other features that are “inconvenient” – but in the process, violate POSIX standard.
• Applications (including MPI IO implementations targeting POSIX I/O) that depend on correctness may fail in hard-to-find 

race conditions

• Some work on MPI IO on non-POSIX parallel file systems



Limitations of MPI I/O
• Did not define other file system operations 

• Access, metadata, naming (including directory structure) implementation-
dependent

• MPI 4.0, section 14.5: “In particular, an implementation must specify how 
familiar operations similar to POSIX cp, rm, and mv can be performed on 
the file.” (Pretty much unchanged since MPI-2)

• Results in relying on some underlying system that provides those 
features – for  HPC, it was (still is, most places) POSIX

• Asynchronous I/O (progress) not mandatory
• MPI Forum discussing “strong” and “weak” progress definition
• Users want “timely” progress, not just functional progress

• Very hard to define in a standard – but can still be expected
• Quality of code generated by a compiler is not part of language standard – but users 

expect and depend upon that



Is the MPI I/O Model Correct for Todays’ Systems 
and Applications?
• Data vs. Files

• MPI I/O is mostly low level – Focus on moving bytes
• One high-level feature – mapping of distributed data structure to files with 

MPI_File_set_view
• Some applications use the file system as a primitive database

• All too common to use file as a database
• Each record a separate file

• Problem: file metadata can be a bottleneck
• Rarely of interest to the (scientific) programmer
• For record-is-file, metadata overly fine-grained

• Modern databases can provide performance and efficiencies
• EMPRESS: Accelerating Scientific Discovery Through Descriptive Metadata Management
• https://doi.org/10.1145/3523698 ACM Transactions on Storage (2022)

• How would you drive adoption of a new, non-POSIX approach?
• Sharing attributes across shared data
• What role should MPI play?

https://doi.org/10.1145/3523698


RMA and MPI
• MPI originally designed for two-sided message passing

• Both point-to-point and collective
• Success of MPI-1 + emergence of alternative one-sided 

communication approach led MPI Forum to add more distributed 
memory programming features

• MPI is really a “Distributed Memory Programming Interface”
• RMA is a good example of the tension between high- and low-level 

interfaces



Different Perspectives on RMA
• Different communities have different goals for RMA

• Express algorithms with different synchronization patterns
• Improves (perhaps significantly) programmability for some algorithms
• Better match to algorithm; e.g., avoid extra messages/data transfers/synchronization

• Access higher performance
• Reduce CPU overhead (e.g., tag matching, message ordering)
• Minimize memory motion, control messages
• Exploit hardware support for communication, overlap with computation, especially for 

large block transfers
• Low-latency for short data transfers
• Remote atomic memory operations or other hardware assist

• But tricky – e.g., atomics not always faster than lock/ops/unlock for sequences of operations 

• Optimize for important special cases
• E.g., symmetric allocation of memory



Thinking about RMA performance
• Different applications have different needs

• Some need low overhead/latency on short messages; common for strong 
scaling case

• Some need high bandwidth for large messages; overlap with computation; 
common for weak scaling case

• These can be in tension, with performance tradeoffs
• MPI “look and feel” adds additional tradeoffs

• Datatypes can provide optimization opportunities (e.g., bundle move, from 
strided to general scatter/gather, together) but add complexity (increase 
latency for simple cases)

• Rich capabilities can force reliance on remote agent, impacting 
performance



What Can an RMA Design Assume?
• MPI has succeeded by embracing a “Greatest Common 

Denominator” approach
• Take advantage of community consensus on hardware features
• Ensure portability with good performance

• But the “Common” part stifles innovation
• Features not already adopted are hard to fully exploit from within the 

standard
• The tyranny of “Common” forces the standard to sacrifice both performance 

and programmability for portability and precise semantics
• Q: How can MPI encourage innovation in RMA interfaces?
• Q: Is portability (with performance) a hard or soft constraint?



MPI One Sided/Remote Memory Access History
• MPI-2 added RMA in 1997 (25 years ago!)

• Some practice, but semantics of other systems often imprecise
• Matched hardware capabilities of high-end systems of the time (Cray 

T3D/T3E; NEC Earth Simulator)
• Expected support in network NIC with local memory (hence memory model)
• Only collective association of memory with MPI_Win

• Both Fence and PSCW defined to exploit the hardware of the day
• Fence could be implemented in hardware and was very fast on some 

systems (e.g., T3D/T3E)
• PSCW described halo exchange well (though hard to exploit)

• Active target and passive target captured different application styles
• Passive target limitations an attempt to ensure portable performance



MPI One Sided/Remote Memory Access History
• MPI-2 RMA had limited adoption

• Complex memory model hard to explain
• Limitations on passive target memory limit usefulness
• Limitations on operations, memory, etc.
• Poor performance of implementations – often unnecessarily so
• Even with that, some apps and implementations did very well

• MPI-3 substantially revised and enhanced RMA in 2012
• Address overly strong correctness semantics (undefined rather than 

erroneous) and additional use cases for applications
• Add “unified” memory model – HW support for coherency now widespread
• Add additional ways to associate memory, describe data transfers, 

complete operations, and extend to processes sharing memory
• But added to MPI-2 RMA – keeping all features from (then) 15 years before



Relevance
• Is MPI RMA too complex, portable, limited, constrained, etc. to be 

useful?
• Consider challenges in using MPI RMA for implementing other one-sided 

programming systems and libraries
• MPI-2 RMA, for all of its limitations, was driven by use examples of 

the time. MPI-3 also driven by different use examples.
• What are the right use cases for MPI-5 RMA?
• Who is the right audience?

• Is MPI RMA a high-level interface, expected to be used freely within 
user applications, or a low-level interface, used to implement core 
abstractions in an application framework?

• Like much of MPI, as Marc Snir points out, it is both – and that is likely a 
bad choice



Synchronization and Notification
• Moving data is the easy part. Synchronization/notification is the 

hard part
• This is the biggest area where RMA has struggled, with many different 

mechanisms for completing RMA, both locally and remotely
• Example: Fence – with hardware support, can be incredibly fast – but imposes a 

“BSP”-like structure. More general semantics (groups != WORLD) may not have same 
hardware support, but this is difficult for the programmer to determine

• Notification is both more powerful and harder/more demanding to 
implement while meeting user performance expectations

• Small changes in semantics can have large performance impact if 
they change what can be done in hardware and what requires CPU 
assist

• This applies to both the MPI specification and the capabilities of hardware



MPI RMA Synchronization 
• MPI RMA Synchronization is 

complex
• Trying to keep things simple for 

programmer (all sync methods 
available at all times) makes 
implementation complex and 
adds overhead

• Q: How important is this level of 
interoperability?

• Q: Are these the right ways to 
synchronize?

4394 J. DINAN ET AL.

Message Passing Interface-3 also introduced request-generating operations, which return a
request to the user that can be used to wait for completion of a specific RMA operation. In the
MPICH implementation, we use the MPICH extended generalized request framework to support
these operations. We enqueue request-generating operations in the corresponding RMA operations
queue and return a request handle that contains a reference to the window. When the user completes
the request, we perform a local flush of the window to the target process. We plan to improve this
design by enabling completion of only the operation corresponding to the request.

4.4. Efficient synchronization state tracking and error detection

Message Passing Interface-3 added several refinements to passive target synchronization, including
a lock-all passive target communication mode, request-generating operations, and flush operations.
In addition, MPI-2 allowed only one passive target epoch at a time using lock/unlock operations;
MPI-3 has lifted this restriction and allows a process to initiate one passive target epoch to every
process in the window’s group.

We have redesigned the RMA error detection in MPICH to detect incorrect use of RMA syn-
chronization operations. An important design goal was that error checking add no more than several
tens of cycles of overhead. To achieve this, we took a state machine approach to defining correct
use of RMA synchronization calls at each process. The corresponding state transition diagram we
developed is shown in Figure 3. This diagram captures all correct uses of MPI calls; any devia-
tion is erroneous and is reported by the MPI implementation. Examples of incorrect usage include
unmatched lock/unlock calls, mixing of passive and active target synchronization, use of flush
or request-generating operations in active target, and mixing of passive target lock and lock-all
synchronization.

As shown in the diagram, fence operations require additional state to track. The fence_called
state changes only during collective calls to fence. If fence has been called without the
MPI_MODE_NOSUCCEED assertion, it is possible to enter into a fenced active target access
epoch. However, it is also valid to ignore the call to fence (i.e., it may have closed an active target
phase in the program) and perform a different RMA access type. It is invalid to perform a fenced
active target access epoch if another synchronization mode is used on the window; however, we do
not currently detect this error because of the state tracking complexity.

4.5. Shared-memory windows

The unified memory model introduced in MPI-3 allows for efficient one-sided operations on systems
with coherent memory. In [17], we described the design and implementation of shared-memory

Figure 3. Remote memory access synchronization state tracking diagram. Dashed lines indicate that a
particular state is bypassed, depending on the fence state of the process.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpeAn implementation and evaluation of the MPI 3.0 

one-sided communication interface, James, Dinan, 
Pavan Balaji, Darius Buntinas, David Goodell, 
William Gropp, and Rajeev Thakur, Concurrency 
and Computation: Practice and Experience, 28, 17, 
4385–4404, cpe.3758, 2016. 

http://dx.doi.org/10.1002/cpe.3758
http://dx.doi.org/10.1002/cpe.3758


Innovation and Stability
• How can MPI RMA stay current with technology when there isn’t 

consensus?
• It can’t – so we’ll need to make some compromises

• We’re currently accepting lower performance and capability to get portability and 
stability of code. Is that the right choice?

• Q: Should MPI RMA provide access to features that can’t be 
efficiently supported on all platforms?

• Should implementations be required to support all features, even if they are 
inefficient, or should the features not be supported?

• How can users reliably determine what is supported, and what is supported 
with adequate performance (and how do you define that)?



Audience
• Who is expected to use MPI RMA? End users? Tool developers? 

Compiler writers?
• More precisely, which parts of RMA are for each of these groups?
• What is the role of libraries? 
• For end users, how expert are the users? Shared memory issues are very tricky; 

RMA shares many of these hazards.
• The MPI RMA specification is aimed at MPI implementors, and 

(correctly) worries about all the edge cases
• Users (mostly) don’t want that – they want a subset that is easy to use and 

understand, even if that might mean missing some optimizations
• Q: Can we describe RMA for a single audience, or should there be 

different user profiles?
• Q: Can/Should MPI RMA define easier-to-understand subsets? Or is this 

the obligation of training materials?



Feature Lifetime
• What is the lifetime required? Do RMA codes need to run without 

change in 20 years? 10? 5? At what cost in potential performance?
• This impacts how we approach hardware innovation
• Many modern software systems expect to break backward compatibility – is 

it time for MPI to do the same, at least in some places?
• Note we’re leaving an era of over 3 decades of architectural 

stability – which has been of great benefit to MPI
• But we’re leaving that era – what made sense while architectures were 

(mostly) stable may no longer make sense
• Q: Is backward compatibility essential?
• Q: Could the standard offer some features with an explicit limited 

lifetime?



Progress
• One-sided nature of RMA requires some progress guarantee
• But TANSTAAFL (There Ain’t No Such Thing As A Free Lunch)

• Many tradeoffs – e.g., more frequent/responsive progress may increase latency, 
lower performance. Or increase latency but increase performance. Or increase 
performance, because you found a good use for an idle core…

• Many changing technical tradeoffs (dark silicon, “extra” cores, …)
• Tradeoffs that made sense with < 1core/chip may not with >100 cores/chip

• Rather than all-or-nothing progress, is there something in the middle?
• Note that MPI-2 permitted restricting passive target operations to special memory 

– something many did not like, but made sense at the time
• MPI Forum discussions of weak and strong progress an example

• “Functional progress,” e.g., a guarantee of eventual progress, does not 
meet most users’ expectation for “timely progress”



Performance and Generality
• MPI is a greatest common denominator approach

• Often described insultingly as “least common denominator” – which is a nonsense 
phrase

• But even “greatest common” is limited to “common”
• Significant performance impact when abstraction is far from what is 

supported in hardware – but hardware operations esp. for RDMA are still 
evolving

• Some systems handle this by giving up on precision in the specification (!!)
• Is high performance low latency or high bandwidth? What if you can’t 

have both?
• The goal of “performance portability” without code change opposes 

making “optional” features available
• But what if a framework (e.g., PETSc) insulates the user from those changes?
• Q: A what level (if any) do we need performance portability?



Thoughts for RMA in MPI 5.0
• RMA in MPI-2 was driven by the hardware of the day, including 

limitations
• Examples: Fence in hardware, limited memory in NIC (separate memory model, 

passive target memory restrictions)
• 25+ years is too long to simply tweek the programming model to match the 

hardware – MPI RMA should be rethought from the ground up to meet current 
hardware

• One-sided hardware acceleration remains in flux
• No consensus on what are the right abstractions (though some are clear)
• Suggests: 

• Don’t require greatest common denominator for RMA. 
• Provide a way to access extensions and query for capabilities. 
• Define a likely subset where portability (in time and across vendors) is important as a trade 

off in performance
• Applications are likely to define communication abstractions – and can provide 

implementations that can exploit optional features without imposing a large burden 
on the programmer

• Many do this today



Thoughts for RMA in MPI 5.0
• Progress may be solved, at least to first order

• Can we assume that there are enough cores/execution contexts to ensure 
some progress?

• Or is this the wrong direction? Should we be looking at progress with no CPU 
involvement, at least with the right hardware?

• As above, are there intermediate levels of progress, as there are for thread 
support?

• Evolution should be driven by use cases
• Where do we want to see MPI RMA used? How do we engage that 

community?
• But a warning: an RMA interface that is the Union of all features may satisfy 

no-one.
• A strength of MPI is its support for tools and higher-level interfaces
• Can we ensure that users are served by these tools without requiring MPI to directly 

support everyone?



Accelerators and MPI
• Major challenge: Separate memory spaces

• Even if “unified”, they have different performance characteristics
• Data Movement

• MPI allows arbitrary access patterns – not just contiguous or strided
• Like RMA, generality may be a mismatch for hardware support

• Synchronization, not just data movement
• MPI assumed general processor

• MPI designed around messages, not streams
• Streams imply some ordering, which can be a performance problem in 

large networks
• But intranode, some sort of stream ordering may be preferable – and 

supported in hardware



Small Steps
• MPI Partitioned Communication
• “High quality” MPI implementation

• Recognize different memory regions, adapt internally
• MPI Forum HACC WG

• Continuations proposal #6 (also see #585)
• Clarification of thread ordering rules #117 #748 
• Integration with accelerator programming models: 

• Accelerator info keys #3 #714 
• Accelerator Synchronous MPI Operations #11 
• Accelerator bindings for partitioned communication #4 
• Partitioned communication buffer preparation (shared with Persistence WG) #264 

• Asynchronous operations #585 
• https://github.com/mpiwg-hybrid/hybrid-issues/wiki 

https://github.com/mpiwg-hybrid/hybrid-issues/issues/6
https://github.com/mpi-forum/mpi-issues/issues/585
https://github.com/mpi-forum/mpi-issues/issues/117
https://github.com/mpi-forum/mpi-standard/pull/748
https://github.com/mpiwg-hybrid/hybrid-issues/issues/3
https://github.com/mpi-forum/mpi-standard/pull/714
https://github.com/mpiwg-hybrid/hybrid-issues/issues/11
https://github.com/mpiwg-hybrid/hybrid-issues/issues/4
https://github.com/mpi-forum/mpi-standard/pull/264
https://github.com/mpi-forum/mpi-issues/issues/585
https://github.com/mpiwg-hybrid/hybrid-issues/wiki


Summary
• MPI has been remarkably successful

• Powerful abstractions, avoided being tied too closely to HW at a moment in 
time

• Benefitted from stability in architecture
• That era of stability has ended

• MPI needs to adapt
• HPC no longer driving all high-performance HW, SW

• Time to identify and rethink assumptions
• Tradeoffs in portability, performance, programmability

• Rethink building blocks
• Consider streams, notification, subsets
• Explicit consideration of latency and bandwidth separately


