
MPI Past and Future
William Gropp

wgropp.cs.Illinois.edu



Rolf and The MPI Forum
• The MPI Forum is an ad hoc group of volunteers passionate about 

providing a practical, effective method for programming massively 
parallel computers

• Rolf has been a key member of the Forum
• A strong advocate for Fortran – and precision in use of and conformance to 

the standard
• Rolf has also been a strong advocate for the use of language 

features to make the MPI library more “user friendly”, including 
catching usage errors at compile time



Some Context
• Before MPI, there was chaos – many systems, but mostly different 

names for similar functions. 
• Even worse – similar but not identical semantics

• Same time(ish) as attack of the killer micros
• Single core per node for almost all systems

• Era of rapid performance increases due to Dennard scaling
• Most users could just wait for their codes to get faster on the next generation 

hardware
• MPI benefitted from a stable software environment

• Node programming changed slowly, mostly due to slow quantitative changes in cache, 
instruction sets (e.g., new vector instructions)

• The end of Dennard scaling unleashed architectural innovation
• And imperatives – more performance requires exploiting

parallelism or specialized architectures
• (Finally) innovation in memory – at least for bandwidth



Why Was MPI Successful?
• It addresses all of the following issues:

• Portability
• Performance
• Simplicity and Symmetry
• Modularity
• Composability
• Completeness

• For a more complete discussion, see “Learning from the Success 
of MPI”, 

• https://link.springer.com/chapter/10.1007/3-540-45307-5_8

http://wgropp.cs.illinois.edu/bib/papers/pdata/2001/mpi-lessons.pdf


Performance vs. Productivity
• MPI gives the tools for achieving performance

• In large part by not getting in the way of locality management
• But that very feature impacts productivity

• User has no choice but to manage locality, which is both hard and tricky
• In addition, as Marc Snir has noted, MPI is neither high nor low 

level
• But is that part of MPI’s success – it does both high and low level, 

and the tradeoff in greater use (mostly) makes up for loss of 
performance/function

• Any programming system will need to consider the tradeoffs of
• Latency vs. Bandwidth vs. Convenience vs. Modularity (among others)



But What about the Programming Crisis?
• Use the right tools
• MPI tries to satisfy everyone, but the real strengths are in

• Attention to performance and scalability
• Support for libraries and tools

• Many computational scientists use frameworks and libraries built 
upon MPI

• This is the right answer for most people
• Saying that MPI is the problem is like saying C (or C++) is the problem, and 

if we just eliminated MPI (or C or C++) in favor of a high productivity 
framework everyone’s problems would be solved

• In some ways, MPI is too usable – many people can get their work done 
with it, which has reduced the market for other tools

• Particularly when those tools don’t satisfy the 6 features in the success of MPI



What Might Be Next
• Intranode considerations

• SMPs (but with multiple coherence domains); new memory architectures
• Accelerators, customized processors (custom probably necessary for 

power efficiency)
• MPI can be used (MPI+MPI or MPI everywhere), but somewhat tortured

• No implementation built to support SIMD on SMP, no sharing of data structures or 
coordinated use of the interconnect

• Internode considerations
• Networks supporting RDMA, remote atomics, even message matching 

(partially supported in MPI now – but what’s next?)
• Overheads of ordering
• Reliability (who is best positioned to recover from an error)



What Might Be Next
• MPI is both high and low level – can we resolve this?
• Challenges and Directions

• Scaling at fixed (or declining) memory per node
• How many MPI processes per node is “right”?

• Realistic fault model that doesn’t guarantee state after a fault
• Support for complex memory models (MPI_Get_address J )
• Support for applications requiring strong scaling

• Implies very low latency interface and overheads
• Low latency means paying close attention to the implementation

• RMA latencies sometimes 10-100x point-to-point in implementations (!)
• MPI performance in MPI_THREAD_MULTIPLE mode
• Integration with code re-writing and JIT systems as an alternative to a full 

language



Adapt to Innovation in Architecture
• Complex nodes

• MPI + X, for X such as OpenMP, CUDA, OpenACC, etc. often effective
• But challenges in the “+”: sharing of resources such as cores, memory, …

• Implementation of MPI on complex nodes
• Sharing information between MPI processes on the same node that must 

share resources, such as memory, network, accelerators, …
• Optimize data movement

• Some can be hidden from the user (shared memory for intranode 
message passing)

• Some requires user action – e.g., node-aware algorithms and 
methods



Adapt to New Language Models – And to Their 
Rapid Evolution
• Is (long-term) backward compatibility still important?

• Many newer languages and systems don’t think so – 5 years is long for 
them

• How does the value of backward compatibility change with age?
• As older codes become less important (or more modern codes become 

available), what is the tradeoff in making newer codes more 
capable/flexible/etc. or the environment more productive?

• What is the cost to future applications and usage from providing 
backward compatibility?

• Many of us started careers when long-term backward compatibility was 
expected. Is this still the right thing?

• What does all of this mean for MPI?



Adapt to New Application Domains and User 
Communities
• Adapt to new application domains and user communities, as well 

as expectations about software
• MPI is still for HPC – but new domains such as bioinformatics, 

Health, AI+X, ….



One Sided/Remote Memory Access History
• MPI-2 added RMA in 1997 (25 years ago!)

• Some practice, but semantics before MPI often imprecise
• Matched hardware capabilities of high-end systems of the time (Cray 

T3D/T3E; NEC Earth Simulator)
• Expected support in network NIC with local memory (hence memory model)
• Only collective association of memory with MPI_Win

• MPI-3 substantially revised and enhanced RMA in 2012
• Address overly strong correctness semantics (undefined rather than 

erroneous) and additional use cases for applications
• Add “unified” memory model – HW support for coherency now widespread
• Add additional ways to associate memory, describe data transfers, 

complete operations, and extend to processes sharing memory
• MPI-4 further updated RMA in 2021 (only minor changes)



Synchronization
• Moving data is the easy part. Synchronization/notification is the 

hard part
• This is the biggest area where RMA has struggled, with many different 

mechanisms for completing RMA
• Example: Fence – with hardware support, can be incredibly fast – but imposes a 

“BSP”-like structure. More general semantics (groups != WORLD) may not have same 
hardware support – and hence may not perform well

• How can MPI RMA stay current with technology when there isn’t 
consensus?

• It can’t – so we’ll need to make some compromises
• We’re currently accepting lower performance and capability to get portability and 

stability of code. Is that the right choice?



Audience
• Who is expected to use MPI RMA? End users? Tool developers? 

Compiler writers?
• More precisely, which parts of RMA are for each of these groups?
• What is the role of libraries? 
• For end users, how expert are the users? Shared memory issues are very 

tricky; RMA shares many of these hazards.
• What is the lifetime required? Do RMA codes need to run without 

change in 20 years? 10? 5? At what cost in potential performance?
• This impacts how we approach hardware innovation
• Many modern software systems expect to break backward compatibility – is 

it time for MPI to do the same, at least in some places?



Progress
• One-sided nature of RMA requires some progress guarantee
• But TANSTAAFL (There Aint No Such Thing As A Free Lunch)

• Many tradeoffs – e.g., more frequent/responsive progress may increase 
latency, lower performance. Or increase latency but increase performance. 
Or increase performance, because you found a good use for an idle core…

• Many changing technical tradeoffs (dark silicon, ”extra” cores, …)
• Tradeoffs that made sense with < 1core/chip may not with > 100 cores/chip

• Rather than all-or-nothing progress, is there something in the 
middle?

• Note that MPI-2 permitted restricting passive target operations to special 
memory – something many did not like, but made sense at the time



Performance and Generality
• MPI is a greatest common denominator approach

• Often described insultingly as “least common denominator” – which is a 
nonsense phrase

• But even “greatest common” is limited to “common”
• Significant performance impact when abstraction is far from what is 

supported in hardware – but hardware operations still evolving
• Some systems handle by giving up on precision in the specification (!!)

• Is high performance low latency or high bandwidth? What if you 
can’t have both?



Relevance
• Is MPI RMA too complex, portable, limited, constrained, etc. to be 

useful?
• Consider challenges in using MPI RMA for implementing other one-sided 

programming systems and libraries
• MPI-2 RMA, for all of its limitations, was driven by use examples of 

the time.
• What are the right use cases for MPI-5 RMA?
• What is the right audience?



Thoughts for RMA in MPI 5.0
• One-sided hardware acceleration remains in flux

• Unclear what are the right abstractions
• Suggests: Don’t require greatest common denominator for RMA 

synchronization. Provide a way to access extensions and query for 
capabilities. Define a likely subset where portability (in time and across 
vendors) is important as a trade off in performance

• “Progress” may be solved, at least to first order
• Can we assume that there are enough cores/execution contexts to ensure 

some progress?
• As above, are there intermediate levels of progress, as there are for thread 

support?
• Evolution should be driven by use cases

• Where do we want to see MPI RMA used? How do we engage that 
community?



Summary
• MPI has been very successful, but faces challenges as computing 

changes
• What is the balance between innovation (change) and stability 

(backward compatibility)? 
• Specification vs. implementation
• MPI and X – how can be better compose programs that use 

programming systems (languages, libraries, tools) optimized to 
each part of the application?

• Become part of the conversation!
• Join the MPI Forum
• Participate in discussions
• Provide challenges


