
Getting to Adoption: Lessons
from MPI and PETSc

William Gropp
wgropp.cs.Illinois.edu

Background
• PETSc - grew from my own research project, focus on what a

demanding user needed
• MPI - grew from the need to avoid gratuitous variations in APIs
• Both have been surprisingly successful

• Both still in use nearly 30 years (!) later
• Why both MPI and PETSc

• They aren’t the same – MPI is a specification (standard) with multiple
implementations, PETSc is a software package defined by what is
implemented

• What are you aiming for? Implementation? Specification? Both?

2

http://www.petsc.org/
http://www.mpi-forum.org/

Two Entangled Projects
• Research into algorithms for

domain decomposition with
implicit methods for PDEs on
distributed memory parallel
computers

• Like the iPSC d7
• No existing numerical library

provided the necessary
functionality

• Anyone remember “reverse
communication?

• Like everyone else, deal with
lack of standard programming
system for the many parallel
computers

3

“tools”

chameleon Petsc

MPI

MPICH

Petsc V2

Many other
message
passing
systems

Common features
• The adoption of PETSc (software) and MPI (specification) have

many common features
• Next five slides
• The obvious one I’m not going to talk about – good design
• Less obvious - Luck

• Adoption of new technology can be disruptive
• Conditions for success often similar
• Not enough to be a little better/cheaper
• Best is new capabilities, unexpected uses

4

Designed around users
• PETSc was not conceived as a

numerical library
• I needed a more flexible set of

numerical routines – one that
cleanly separated the algorithm
and data structure from the
mathematical operation

• It turned out that I wasn’t the only
one that needed this

• Having a specific set of
application needs was key in
ensuring the design of PETSc
met user needs

5

• MPI history
• Ken Kennedy wanted a reliable

layer on which to implement
higher level parallel programming
models, e.g., HPF

• There were many different
message passing systems – too
many

• MPI Forum used an open
process, with vendors,
researchers, and users
represented

• https://wgropp.cs.illinois.edu/bib/t
alks/tdata/2023/MPI-Lusk.pdf

https://wgropp.cs.illinois.edu/bib/talks/tdata/2023/MPI-Lusk.pdf
https://wgropp.cs.illinois.edu/bib/talks/tdata/2023/MPI-Lusk.pdf

Aggressively portable
• PETSc ran on a wide variety of

environments, even non-Unix
• Several generations of build

systems
• Early adopter of capability

based portability
• E.g., HAS_AIO, not AIX (or

system name)
• Follow language standards

(avoid compiler extensions, no
matter how inviting)

• Or isolate use to enable
workarounds

6

• MPI designed to be OS agnostic;
implementations ran on wide variety
of systems (even non-Unix)

• Greatest Common Denominator
approach

• Abstraction hides network and
implementation specifics

• Early implementations also strived
for portability

• MPICH designed to allow incremental
implementation; start with a run-
everywhere model then add extra-value
features, such as collectives in network

• Many vendors able to use MPICH as
the basis for their own MPI

http://www.mpich.org/

Sweet spot of portability, performance, and
generality
• PETSC provides end-to-end

support for the user’s application
• Both high-level, easy to use routines

and lower-level, easier to optimize,
routines.

• Similar philosophy given as one
reason for the success of Python
(IEEE Spectrum 9/23 p 2)

• Attention to performance
• Manually unrolled loops when

compiler wouldn’t
• New “multivector” routines to reduce

memory motion
• Performance analysis guided tuning;

“achievable performance” in 1999
Gordon Bell winning application
foreshadowed roofline analysis

7

• MPI – Early focus on performance
(no extra memory copies, which
was not a feature of some
alternatives)

• MPI may be both too high-level
and too low-level at the same
time – but maybe that is one
reason that it succeeded?

• https://www.mcs.anl.gov/mpi-
symposium/slides/marc_snir_25yrs
mpi.pdf

• There are many reason for MPI’s
success; see “Learning from the
Success of MPI”

• https://link.springer.com/chapter/10.
1007/3-540-45307-5_8

https://dlnext.acm.org/doi/10.1145/331532.331600
https://dlnext.acm.org/doi/10.1145/331532.331600
https://www.mcs.anl.gov/mpi-symposium/slides/marc_snir_25yrsmpi.pdf
https://www.mcs.anl.gov/mpi-symposium/slides/marc_snir_25yrsmpi.pdf
https://www.mcs.anl.gov/mpi-symposium/slides/marc_snir_25yrsmpi.pdf
https://link.springer.com/chapter/10.1007/3-540-45307-5_8
https://link.springer.com/chapter/10.1007/3-540-45307-5_8

Development of documentation and training
• PETSC

• BYOC (bring your own code)
workshops (we’d call them
hackathons today).

• Many example codes, including
typical use for PDE solutions,
distributed with software

• Documentation for all routines
• With some *content*, not just

regurgitating the definition in the
code

• You have to write documentation,
not just extract from the code
definition

8

• MPI
• Many people have done tutorials

from 1-5 days
• Documentation (see PETSc)
• Books – Including Using MPI

(now in 3rd edition), Using MPI2,
and Using Advanced MPI

• Some example codes (though
not, frankly, at the level of
PETSc’s)

User support
• PETSc takes bug reports and

often acts on them
• Not only for implementation bugs

but for desired features
• Formal bug tracking

• Several generations of tools

9

• MPI Forum takes user
comments

• Ex. An early meeting before MPI-
1 released took user feedback
and added a few functions
(buffered send and wtime/wtick)

• MPI Implementations have
active communities including
bug reporting

Special features of a specification
• You can’t change things on a whim.

• Take more time to get it right the first time
• Does slow down innovation
• But does mean that you can build tools without version hell
• (Containers are a pragmatic answer to the failure of software engineering)

• Benefits include the amortization of comprehensive documentation
and examples over longer time because of the stability of the
definition

• Separation of specification from implementation encourages
abstraction

10

Other Notes
• Implementations

• You get one chance with most users (even me!)
• Gratuitous differences and changes are a barrier as well as extra work
• If performance is important, make sure you deliver

• You’ll need to know what performance is achievable
• If scalability is important, make sure you deliver

• Make sure you define you terms
• Scalability to some is 4 cores in one socket; to others 1M cores in 10K nodes.

11

Adoption barriers

• PETSc
• Open Source (so others could in

principle pick up the code) + new
capabilities (high level operators rather
than explicit data structure/algorithm
choices)

12

• MPI
• Open Source implementations (plural,

reduces risk) as well as commercial. As
a specification, mostly codified existing
practice (at least in the beginning) so
that subsets mostly easily implemented.

What happens if you go away? What is someone’s fallback?

Have an answer to “what happens if you go away?”
• Being commercial is no longer any guarantee – see the 293(!!) dead projects at

https://killedbygoogle.com/ . If anything, a successful open-source project is
less risky than a commercial project because (a subset of) the community can
decide to maintain it.

https://killedbygoogle.com/

Lessons
1. Understand and meet user need

• Design for a well-understood audience - That might be yourself
• Not “build it and they will come”

2. Run in user’s environment
3. Provide real value

• Know your place in the ecosystem
• End-to-end solutions are often easiest for the user
• Second are “drop-in” replacements

• Not “This works for benchmarks” – model problems often have simplicities not
shared with problems of interest

4. Document – nothing is as obvious as you think
5. Provide support – someone will need to answer questions
6. Understand the concerns of your audience

• What happens to them if you disappear?

13

