Getting to Adoption: Lessons
from MPI| and PETSc

William Gropp
wgropp.cs.lllinois.edu

JT ILLINOIS NCSA

Background

« PETSc - grew from my own research project, focus on what a
demanding user needed

« MPI - grew from the need to avoid gratuitous variations in APls

» Both have been surprisingly successful
» Both still in use nearly 30 years (!) later

* Why both MPI and PETSc

* They aren’t the same — MPI is a specification (standard) with multiple
implementations, PETSc is a software package defined by what is
Implemented

« What are you aiming for? Implementation? Specification? Both?

JT ILLINOIS NCSA)

http://www.petsc.org/
http://www.mpi-forum.org/

Two Entangled Projects

» Research into algorithms for
domain decomposition with
implicit methods for PDESs on

distributed memory parallel Many other
computers message
* Like the iPSC d7 passing

systems

* No existing numerical library
rovided the necessary
unctionality

* Anyone remember “reverse
communication?

* Like everyone else, deal with
lack of standard programming
system for the many parallel
computers

JT ILLINOIS NCSA

ch.ameleon

Petsc V2

Common features

« The adoption of PETSc (software) and MPI (specification) have
many common features
* Next five slides
* The obvious one I'm not going to talk about — good design
* Less obvious - Luck

« Adoption of new technology can be disruptive |j||_C\/'V(_\

WHEN NEW TECHNOLOGIES CAUSE

» Conditions for success often similar SRR
* Not enough to be a little better/cheaper ;
» Best is new capabilities, unexpected uses

Capturing Brain Deformation

Simon K. Warfield, Florin Talos, Corey Kemper, Lauren O'Donnell, Carl-Fredrik
Westin, William M. Wells, Peter McL. Black, Ferenc A. Jolesz, and Ron Kikini;

C ional Radiology Lab y, Surgical Planning Laboratory, Department of Radiology,
Dpanmn of Sur; gryHararde cal Scho landB ghamandWmn s Hospital, 75
Francis St., Bos! MAOZIIS USA, Mas: h setts Ins of Technology

arfield@bwh.harvard.edu

JT ILLINOIS NCSA

Designed around users

« PETSc was not conceived asa * MPI history

numerical library » Ken Kennedy wanted a reliable
« | needed a more flexible set of layer on which to implement
numerical routines — one that higher level parallel programming
cleanly separated the algorithm models, e.g., HPF
and data structure from the * There were many different
mathematical operation message passing systems — too
* |t turned out that | wasn'’t the only many
one that needed this « MPI Forum lFI]SGd gn open
- P> rocess, with vendors,
’ HaVI_ng d specific set of : Eesearchers, and users
application needs was key in represented
ensuring the design of PETSc « https://wgropp.cs.illinois.edu/bib/t
met user needs alks/tdata/2023/MPI-Lusk.pdf

JT ILLINOIS NCSA .

https://wgropp.cs.illinois.edu/bib/talks/tdata/2023/MPI-Lusk.pdf
https://wgropp.cs.illinois.edu/bib/talks/tdata/2023/MPI-Lusk.pdf

Aggressively portable

° PE'I_'SC ran on a wide variety of
environments, even non-Unix

« Several generations of build
systems

« Early adopter of capability
based portability

« E.g., HAS_AIO, not AlX (or
system name)

* Follow language standards
(avoid compiler extensions, no
matter how inviting)

* Or isolate use to enable
workarounds

 MPI designed to be OS agnostic;
Implementations ran on wide variety
of systems (even non-Unix)

 Greatest Common Denominator
approach

e Abstraction hides network and
implementation specifics

» Early implementations also strived
for portability
« MPICH designed to allow incremental
implementation; start with a run-

everywhere model then add extra-value
features, such as collectives in network

* Many vendors able to use MPICH as
the basis for their own MPI

JT ILLINOIS NCSA .

http://www.mpich.org/

Sweet spot of portability, performance, and

generality

« PETSC provides end-to-end
support for the user’s application

« Both high-level, easy to use routines
and lower-level, easier to optimize,
routines.

 Similar philosophy given as one
reason for the success of Python
(IEEE Spectrum 9/23 p 2)

 Attention to performance

* Manually unrolled loops when
compiler wouldn’t

* New “multivector” routines to reduce
memory motion

« Performance analysis guided tuning;
“achievable performance” in 1999
Gordon Bell winning application
foreshadowed roofline analysis

* MPI — Early focus on performance
(no extra memory copies, which
was not a feature of some
alternatives)

 MPI| may be both too high-level
and too low-level at the same
time — but maybe that is one
reason that it succeeded?
 https://www.mcs.anl.gov/mpi-
symposium/slides/marc snir 25yrs
mpl.pdt

* There are many reason for MPI’s
success; see "Learning from the
Success of MPI

 https://link.springer.com/chapter/10.
10U0//5-04U-400U/7-0 ©

JT ILLINOIS NCSA ,

https://dlnext.acm.org/doi/10.1145/331532.331600
https://dlnext.acm.org/doi/10.1145/331532.331600
https://www.mcs.anl.gov/mpi-symposium/slides/marc_snir_25yrsmpi.pdf
https://www.mcs.anl.gov/mpi-symposium/slides/marc_snir_25yrsmpi.pdf
https://www.mcs.anl.gov/mpi-symposium/slides/marc_snir_25yrsmpi.pdf
https://link.springer.com/chapter/10.1007/3-540-45307-5_8
https://link.springer.com/chapter/10.1007/3-540-45307-5_8

Development of documentation and training

« PETSC * MPI

« BYOC (bring your own code) * Many people have done tutorials
workshops (we'd call them from 1-5 days
hackathons today). Documentation (see PETSc)

* Many example codes, including « Books — Including Using MPI
typical use for PDE solutions, (now in 3" edition), Using MPI2,
distributed with software and Using Advanced MP!

» Documentation for all routines « Some example codes (though

* With some *content”, not just not, frankly, at the level of
regurgitating the definition in the PETSc’s)
code

* You have to write documentation,
not just extract from the code
definition

JT ILLINOIS NCSA .

User support

« PETSc takes bug reports and
often acts on them

* Not only for implementation bugs
but for desired features

* Formal bug tracking
» Several generations of tools

 MPI| Forum takes user
comments

* Ex. An early meeting before MPI-
1 released took user feedback
and added a few functions
(buffered send and wtime/wtick)

 MPI Implementations have
active communities including
bug reporting

JT ILLINOIS NCSA o

Special features of a specification

* You can’t change things on a whim.
« Take more time to get it right the first time
* Does slow down innovation
« But does mean that you can build tools without version hell
» (Containers are a pragmatic answer to the failure of software engineering)

» Benefits include the amortization of comprehensive documentation
and examples over longer time because of the stability of the
definition

« Separation of specification from implementation encourages
abstraction

JT ILLINOIS NCSA

Other Notes

* Implementations
* You get one chance with most users (even me!)
« Gratuitous differences and changes are a barrier as well as extra work

* |f performance is important, make sure you deliver
* You'll need to know what performance is achievable
* |f scalability is important, make sure you deliver

» Make sure you define you terms
« Scalability to some is 4 cores in one socket; to others 1M cores in 10K nodes.

JT ILLINOIS NCSA

Adoption barriers

What happens if you go away? What is someone’s fallback?

« PETSc - MPI
» Open Source (so others could in * Open Source implementations (plural,
principle pick up the code) + new reduces risk) as well as commercial. As
capabilities (high level operators rather a specification, mostly codified existing
than explicit data structure/algorithm practice (at least in the beginning) so
choices) that subsets mostly easily implemented.

Have an answer to “what happens if you go away?”

« Being commercial is no longer any guarantee — see the 293(!!) dead projects at
https://killedbygoogle.com/ . If anything, a successful open-source project is
less risky than a commercial project because (a subset of) the community can

decide to maintain it.

JT ILLINOIS NCSA

https://killedbygoogle.com/

Lessons

1. Understand and meet user need
* Design for a well-understood audience - That might be yourself
* Not “build it and they will come”

2. Run in user’s environment

3. Provide real value

* Know your place in the ecosystem
» End-to-end solutions are often easiest for the user
« Second are “drop-in” replacements

* Not “This works for benchmarks” — model problems often have simplicities not
shared with problems of interest

4. Document — nothing is as obvious as you think
5. Provide support — someone will need to answer questions

6. Understand the concerns of your audience
« What happens to them if you disappear?

JT ILLINOIS NCSA

