Lecture 11: Matrix-Matrix Multiply

William Gropp
www.cs.illinois.edu/~wgropp
Performance for a Common Calculation

• Combine memory issues with computations
 ♦ Spatial and Temporal locality
 ♦ Dependencies on computation

• Dense matrix-matrix multiply a good example
 ♦ Lots of potential to avoid extra memory operations
 ♦ Lots of potential to arrange computation for better performance
Another Example: Matrix-Matrix Multiply (ddot form)

- do $i=1,n$
 - do $j=1,n$
 - do $k=1,n$
 - $c(i,j) = c(i,j) + a(i,k) \times b(k,j)$

Like transpose, but two new features:
- Perform a calculation (we’ll see why this is important later)
- Reuse of data: n^2 data used for n^3 operations
Memory Locality for Matrix-Matrix Multiply

• Problems:
 ♦ Only one value in register reused (C(i,j))
 ♦ If cache line size * n > L1 cache size, there is a miss on every load of A
 ♦ Every cache line size (in doubles) may incurs a long delay as each cacheline is loaded

• How problems are addressed
 ♦ Can reuse values in C, A, and B
 ♦ Can block matrix A
 ♦ May be able to *prefetch* (more later)
Reusing Data

- Load data into register
- Use several times (each load, even from cache, is at least a cycle)
- Use *loop unrolling* to expose register use

  ```
  ... 
  c(i,j) += a(i,k) * b(k,j) 
  c(i+1,j) += a(i+1,k) * b(k,j) 
  c(i,j+1) += a(i,k) * b(k,j+1) 
  c(i+1,j+1) += a(i+1,k) * b(k,j+1) 
  ```
- Each a(i,j) etc. used twice
 - Cuts the numbers of loads in half
 - But requires enough registers to hold all items
 - 4 registers for a(I,k), a(I+1,k), b(k,j), b(k,j+1) plus 2 registers for I, j, and 4 registers for address of a(I,k), address of b(k,j), address of c(I,j), and address of c(I,j+1).
Blocking for Cache

- Reuse data in cache by blocking

Block for each level of memory hierarchy
Blocked, Unrolled MxM (one level only)

- Do kk=1,n,stride
do ii=1,n,stride
do j=1,n-2,2
do i=ii,min(n,ii+stride-1),2
do k=kk,min(n,kk+stride-1)
c(i,j) += a(i,k) * b(k,j)
c(i+1,j) += a(i+1,k)* b(k,j)
c(i,j+1) += a(i,k) * b(k,j+1)
c(i+1,j+1) += a(i+1,k)* b(k,j+1)

- This is only a first step. Achieving good performance for this simple operation requires blocking for each level of cache, available registers, (and TLB – for huge problems).
Considerations for Blocking

- **Block for Registers**
 - Be careful not to exceed the number of available floating point registers

- **Block for load-store/floating point ratio**
 - Loop over cache blocks
 - (Choose size to allow load latency to be hidden by floating point work - we’ll see this later)

- **Block for cache size**

- **Block for cache bandwidth**
 - To match time to move data between memory/cache to the time spent operating on data within the cache
Why Don’t Compilers Perform These Transformations?

• Dense Matrix-Matrix Product
 ♦ Most studied numerical program by compiler writers
 ♦ Core of some important applications
 ♦ More importantly, the core operation in High Performance Linpack
 • Benchmark used to “rate” the top 500 fastest systems
 ♦ Should give optimal performance...

• But
 ♦ Blocking changes the order of evaluation; floating point arithmetic is not associative
 • Thus it is wrong for the compiler to perform blocking transformations
 ♦ While loop unrolling safe for most matrix sizes, blocking is appropriate only for large matrices (e.g., don’t block for cache for 4x4 or 16x16 matrices).
 • If the matrices are smaller, the blocked code can be slower

• The result is a gap between performance realized by compiled code and the achievable performance
Performance Gap in Compiled Code

Enormous effort required to get good performance

From Atlas

Hand-tuned
Compiler

Large gap between natural code and specialized code

Level 3 BLAS On One Processor of a Sun UltraSparc 2200

Vendor BLAS
ATLAS/GEMM-based BLAS
Reference BLAS

DFLOPS

DGEMM DSYMM DSYR2K DSYRK DTRMM DTRSM
Comments

- Memory motion dominates the performance of many operations
- Sustained memory bandwidth can provide a better guide to performance
- But hardware architecture introduces features important for performance that are not visible in the programming language
 - A good thing most of the time
 - Not a good thing when performance is important
Comments

• Very high quality compilers can perform many of these transformations
 ♦ Note that some are *not exact* for floating point arithmetic
 ♦ High levels of optimization may assume floating point arithmetic is associative

• Some even detect matrix-matrix multiply
 ♦ Performance for similar-looking operations may not be as good
Matrix-Matrix Multiply Performance

• There are many things to take into account in creating a fast matrix-matrix multiply routine
 ♦ We’ve just touched on a few to illustrate performance issues and models
 ♦ You can find more information, including tutorials, focused on this and similar dense matrix operations