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Yet More To Consider in 
Understanding Performance  

•  We have implicitly assumed that an operation 
takes one clock cycle. 
♦  This is rarely true! 

•  So why can we assume that instructions take 
one cycle? 
♦  Because most operations can be started every cycle 

•  Each operation is divided into several steps 
•  A different step is performed for each operation during 

a clock cycle 
•  This approach is called pipelining 
•  Not all instructions can be pipelined! 

♦  Impact on algorithms and programming models 
•  Full performance requires multiple, concurrent (and 

independent) operations 
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Example: Floating Point Addition 
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Memory Bus Speeds Versus 
Sustained Memory Bandwidth 

• The performance measured by the 
STREAM benchmark is different 
(and lower) than the “memory bus 
bandwidth”.  Why? 
♦ Memory bus bandwidth is simply the 

width of the memory bus (in bytes) 
times the clock rate of the bus 
• Instantaneous rate at which data can be 

transferred 
♦ Lets look at the STREAM code and 

see what it does 
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Understanding STREAM 
Performance 

• Consider the simple case of 
memory copy: 
♦ do i=1,n 

    a(i) = b(i) 
enddo 

♦ Suppose system memory bandwidth 
is 5.5GB/s.  How fast will this loop 
execute? 
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BG/L Node 

700 MHz 

Critical data: 

L2 Miss is 
about 60 
cycles 
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Stream Performance 
Estimate 

•  Easy estimate: 11 GB/s = 2 * 5.5 GB/Sec to L3, 5.5 GB/
Sec to main memory 
♦  Minimum link speed is 5.5 GB/s each way, Stream adds both 

•  Measured performance is 1.2 GB/s! 
♦  Why? 

•  Time to move each cache line 
♦  5.5 GB/s ~ 8 bytes/cycle (memory bus bandwidth) 
♦  ~60 cycles L2 miss (latency) 
♦  64 byte cache line = 8 cycles (bandwidth) + 60 cycles 

(latency) = 68 cycles or ~ 1byte/cycle (read) 
♦  Stream bytes read + bytes written / time, so stream estimate 

is 2 * 1 byte/cycle, or 1.4 GB/sec 
•  This is typical (if anything, better than many systems 

because L2 miss cost is low) 
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Impact of Instruction Latency 

• Programming languages usually 
present a model in which one line 
(or operation) completes before 
the next starts 
♦ This is not what happens in pipelined 

architectures (= real world) 
• Algorithms often have the same 

feature 
♦ After all, often written as pseudo code 

with these features 
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Another Example: Reductions 

•  Consider this code 
do i=1,n 
    sum = sum + a(i) * b(i) 
enddo 

•  How fast can this run (assume data 
already in cache)? 
♦ Easy model: L1 Rate (needs 2 8-byte 

doubles/floating point add/multiply).  If 32 
GB/sec, then 4GFlops is possible with a 
2GHz clock 

♦ But it is not that simple… 
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Operation Order 

•  Fortran specifies 
the operation 
order.  The loop 
defines the result 
as  
sum = ((((a1*b1) 
+ (a2*b2)) + 
(a3*b3))+(a4*b4)) 
+ … 

A1*B1 

A2*B2 

A4*B4 

A3*B3 
+ 

+ 

+ 

+ 

sum 
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Question 

•  How many clock cycles does it take to 
compute 
sum = a+(b+(c+d)) 

•  Assume  
♦ Each add takes 3 cycles to complete 

(latency) 
♦ Assume all data is in register (no clock 

cycles needed to load or store values) 
♦ Assume the calculation must be performed 

in the order written (parenthesis respected)  
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Impact of Implied 
Dependencies 

•  Assume each add takes 3 
cycles to complete (latency) 

•  Since each add depends on 
the result of the prior add, 
only 1 add may be 
performed every 3 cycles 

•  Top speed reduced by a 
factor of 3 

•  But if the evaluation tree is 
balanced, there are 
separate adds (do not 
involve the results of an 
immediately prior add), 
those adds may overlap   

A1*B1 
A2*B2 

A4*B4 A3*B3 

+ 

+ 

+ 
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Impact of Implied 
Dependencies 

•  Assume each add takes 3 
cycles to complete (latency) 

•  Since each add depends on 
the result of the prior add, 
only 1 add may be 
performed every 3 cycles 

•  Top speed reduced by a 
factor of 3 

•  But if the evaluation tree is 
balanced, there are 
separate adds (do not 
involve the results of an 
immediately prior add), 
those adds may overlap   

A1*B1 A2*B2 

A4*B4 

A3*B3 

+ 

+ 

+ 

+ 

sum 
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Associativity 

•  Operations that are associative maybe 
evaluated in any grouping: 

•  (a*b)*c = a*(b*c) 
•  Floating point is not associative 

♦  Round-off error, e.g., can lead to large errors. 

•  Options available: 
♦  Rewrite code to provide an order of evaluation with 

fewer immediate dependencies 
♦  Tell compiler to assume all operations are associative 

(all, in the entire file) 
•  Some higher-levels of optimization imply this 
•  Without it, latency of pipeline operations severely limits 

performance 
•  But with it, enabling optimization can change the computed 

results! 
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A Faster Reduce 

•  Even better is to 
divide the tree. 
Consider this 
code instead 
♦  Performance of 

original version: 
530 Mflops 

♦  Performance of 
new version: 
1700 Mflops 

•  (Caveat: The 
new version has 
some other 
advantages) 

•  sum1 = 0.0 
sum2 = 0.0 
sum3 = 0.0 
sum4 = 0.0 
do i=1,vecSize,4 
     sum1 = sum1 + vecA(i)*vecB(i) 
     sum2 = sum2 + vecA(i+1) * vecB(i+1) 
     sum3 = sum3 + vecA(i+2) * vecB(i+2) 
     sum4 = sum4 + vecA(i+3) * vecB(i+3) 
enddo 
sum = sum1 + sum2 + sum3 + sum4 

Discussion: What is wrong with 
this approach of manually 
expressing the ordering? 
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Dot Product in More Detail 

• Consider the following 
architecture: 
♦ L1 latency is 3 cycles 
♦ Floating multiplies take 5 cycles 
♦ Floating adds take 3 cycles 
♦ Integer operations take 1 cycle 
♦ Comparisons and branches take 2 

cycles 
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Example Instruction Schedule 
Cycle Load/Store Multiply Add Instr 

1 La1 

2 Lb1 A++ 

3 >a1 La2 B++ 

4 Lb2 >b1 A++ 

5 La3 >a2 A1*b1 B++ 

6 >b2 Lb3 A++ 

7 La4 >a3 A2*b2 B++ 

8 Lb4 >b3 A++ 

9 >a4 = A3*b3 B++ 

10 >b4 +a1b1 

11 A4*b4 = 

12 = +a2b2 

13 = 

14 +a3b3 = N-=4 

15 = CMP 

16 = +a4b4 

17 Branch 

18 = 
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Notables 

• 18 cycles for 8 operations = 44% 
• Rate that loads can be issued 

controls performance: must load 
two values before beginning the 
related multiply 
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Example Instruction Schedule: 
Idle Functional Units 

Cycle Load/Store Multiply Add Instr 

1 La1 

2 Lb1 A++ 

3 >a1 La2 B++ 

4 Lb2 >b1 A++ 

5 La3 >a2 A1*b1 B++ 

6 >b2 Lb3 A++ 

7 La4 >a3 A2*b2 B++ 

8 Lb4 >b3 A++ 

9 >a4 = A3*b3 B++ 

10 >b4 +a1b1 

11 A4*b4 = 

12 = +a2b2 

13 = 

14 +a3b3 = N-=4 

15 = CMP 

16 = +a4b4 

17 Branch 

18 = 
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Observations 

• The dependencies between the 
load, multiply, and add operations 
mean that there is much wasted 
time. 

• We can unroll the loop to provide 
more operations 

• We can skew the operations across 
loops to hide the latency of the 
operations  
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Observations 

•  Simple, abstract performance model 
gives insight into loop performance 
♦ Still not predictive – details depend on 

architecture 
♦ Does expose impact of multicycle 

instructions, dependencies between 
operations 

•  Also illustrates that all parts of a 
processor are rarely busy 
♦ Exploited in some architectures through 

“simultaneous multithreading” 


