
Lecture 12: Instruction
Execution and Pipelining

William Gropp
www.cs.illinois.edu/~wgropp

2

Yet More To Consider in
Understanding Performance

•  We have implicitly assumed that an operation
takes one clock cycle.
♦  This is rarely true!

•  So why can we assume that instructions take
one cycle?
♦  Because most operations can be started every cycle

•  Each operation is divided into several steps
•  A different step is performed for each operation during

a clock cycle
•  This approach is called pipelining
•  Not all instructions can be pipelined!

♦  Impact on algorithms and programming models
•  Full performance requires multiple, concurrent (and

independent) operations

3

Example: Floating Point Addition

4

Memory Bus Speeds Versus
Sustained Memory Bandwidth

• The performance measured by the
STREAM benchmark is different
(and lower) than the “memory bus
bandwidth”. Why?
♦ Memory bus bandwidth is simply the

width of the memory bus (in bytes)
times the clock rate of the bus
• Instantaneous rate at which data can be

transferred
♦ Lets look at the STREAM code and

see what it does

5

Understanding STREAM
Performance

• Consider the simple case of
memory copy:
♦ do i=1,n

 a(i) = b(i)
enddo

♦ Suppose system memory bandwidth
is 5.5GB/s. How fast will this loop
execute?

6

BG/L Node

700 MHz

Critical data:

L2 Miss is
about 60
cycles

7

Stream Performance
Estimate

•  Easy estimate: 11 GB/s = 2 * 5.5 GB/Sec to L3, 5.5 GB/
Sec to main memory
♦  Minimum link speed is 5.5 GB/s each way, Stream adds both

•  Measured performance is 1.2 GB/s!
♦  Why?

•  Time to move each cache line
♦  5.5 GB/s ~ 8 bytes/cycle (memory bus bandwidth)
♦  ~60 cycles L2 miss (latency)
♦  64 byte cache line = 8 cycles (bandwidth) + 60 cycles

(latency) = 68 cycles or ~ 1byte/cycle (read)
♦  Stream bytes read + bytes written / time, so stream estimate

is 2 * 1 byte/cycle, or 1.4 GB/sec
•  This is typical (if anything, better than many systems

because L2 miss cost is low)

8

Impact of Instruction Latency

• Programming languages usually
present a model in which one line
(or operation) completes before
the next starts
♦ This is not what happens in pipelined

architectures (= real world)
• Algorithms often have the same

feature
♦ After all, often written as pseudo code

with these features

9

Another Example: Reductions

•  Consider this code
do i=1,n
 sum = sum + a(i) * b(i)
enddo

•  How fast can this run (assume data
already in cache)?
♦ Easy model: L1 Rate (needs 2 8-byte

doubles/floating point add/multiply). If 32
GB/sec, then 4GFlops is possible with a
2GHz clock

♦ But it is not that simple…

10

Operation Order

•  Fortran specifies
the operation
order. The loop
defines the result
as
sum = ((((a1*b1)
+ (a2*b2)) +
(a3*b3))+(a4*b4))
+ …

A1*B1

A2*B2

A4*B4

A3*B3
+

+

+

+

sum

11

Question

•  How many clock cycles does it take to
compute
sum = a+(b+(c+d))

•  Assume
♦ Each add takes 3 cycles to complete

(latency)
♦ Assume all data is in register (no clock

cycles needed to load or store values)
♦ Assume the calculation must be performed

in the order written (parenthesis respected)

12

Impact of Implied
Dependencies

•  Assume each add takes 3
cycles to complete (latency)

•  Since each add depends on
the result of the prior add,
only 1 add may be
performed every 3 cycles

•  Top speed reduced by a
factor of 3

•  But if the evaluation tree is
balanced, there are
separate adds (do not
involve the results of an
immediately prior add),
those adds may overlap

A1*B1
A2*B2

A4*B4 A3*B3

+

+

+

13

Impact of Implied
Dependencies

•  Assume each add takes 3
cycles to complete (latency)

•  Since each add depends on
the result of the prior add,
only 1 add may be
performed every 3 cycles

•  Top speed reduced by a
factor of 3

•  But if the evaluation tree is
balanced, there are
separate adds (do not
involve the results of an
immediately prior add),
those adds may overlap

A1*B1 A2*B2

A4*B4

A3*B3

+

+

+

+

sum

14

Associativity

•  Operations that are associative maybe
evaluated in any grouping:

•  (a*b)*c = a*(b*c)
•  Floating point is not associative

♦  Round-off error, e.g., can lead to large errors.

•  Options available:
♦  Rewrite code to provide an order of evaluation with

fewer immediate dependencies
♦  Tell compiler to assume all operations are associative

(all, in the entire file)
•  Some higher-levels of optimization imply this
•  Without it, latency of pipeline operations severely limits

performance
•  But with it, enabling optimization can change the computed

results!

15

A Faster Reduce

•  Even better is to
divide the tree.
Consider this
code instead
♦  Performance of

original version:
530 Mflops

♦  Performance of
new version:
1700 Mflops

•  (Caveat: The
new version has
some other
advantages)

•  sum1 = 0.0
sum2 = 0.0
sum3 = 0.0
sum4 = 0.0
do i=1,vecSize,4
 sum1 = sum1 + vecA(i)*vecB(i)
 sum2 = sum2 + vecA(i+1) * vecB(i+1)
 sum3 = sum3 + vecA(i+2) * vecB(i+2)
 sum4 = sum4 + vecA(i+3) * vecB(i+3)
enddo
sum = sum1 + sum2 + sum3 + sum4

Discussion: What is wrong with
this approach of manually
expressing the ordering?

16

Dot Product in More Detail

• Consider the following
architecture:
♦ L1 latency is 3 cycles
♦ Floating multiplies take 5 cycles
♦ Floating adds take 3 cycles
♦ Integer operations take 1 cycle
♦ Comparisons and branches take 2

cycles

17

Example Instruction Schedule
Cycle Load/Store Multiply Add Instr

1 La1

2 Lb1 A++

3 >a1 La2 B++

4 Lb2 >b1 A++

5 La3 >a2 A1*b1 B++

6 >b2 Lb3 A++

7 La4 >a3 A2*b2 B++

8 Lb4 >b3 A++

9 >a4 = A3*b3 B++

10 >b4 +a1b1

11 A4*b4 =

12 = +a2b2

13 =

14 +a3b3 = N-=4

15 = CMP

16 = +a4b4

17 Branch

18 =

18

Notables

• 18 cycles for 8 operations = 44%
• Rate that loads can be issued

controls performance: must load
two values before beginning the
related multiply

19

Example Instruction Schedule:
Idle Functional Units

Cycle Load/Store Multiply Add Instr

1 La1

2 Lb1 A++

3 >a1 La2 B++

4 Lb2 >b1 A++

5 La3 >a2 A1*b1 B++

6 >b2 Lb3 A++

7 La4 >a3 A2*b2 B++

8 Lb4 >b3 A++

9 >a4 = A3*b3 B++

10 >b4 +a1b1

11 A4*b4 =

12 = +a2b2

13 =

14 +a3b3 = N-=4

15 = CMP

16 = +a4b4

17 Branch

18 =

20

Observations

• The dependencies between the
load, multiply, and add operations
mean that there is much wasted
time.

• We can unroll the loop to provide
more operations

• We can skew the operations across
loops to hide the latency of the
operations

21

Observations

•  Simple, abstract performance model
gives insight into loop performance
♦ Still not predictive – details depend on

architecture
♦ Does expose impact of multicycle

instructions, dependencies between
operations

•  Also illustrates that all parts of a
processor are rarely busy
♦ Exploited in some architectures through

“simultaneous multithreading”

