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Performance is Key 

•  Parallelism is (usually) used to get more 
performance 
♦ How do you know if you are making good 

(not even best) use of a parallel system? 
•  Even measurement-based approaches 

can be (and all to often are) performed 
without any real basis of comparison 
♦ The key questions are 

• Where is most of the time spent? 
• What is the achievable performance, and how do 

I get there? 
♦ This latter is often overlooked, leading to 

erroneous conclusions based on the 
(immature) state of compiler / runtime / 
code implementations 
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Tuning A (Parallel) Code 

•  Typical Approach 
♦  Profile code.  Determine where most time is being spent 
♦  Study code.  Measure absolute performance, look at 

performance counters, compare FLOP rates 
♦  Improve code that takes a long time, reduce time spent in 

“unproductive” operations 
•  Why this isn’t the right Approach: 

♦  How do you know when you are done? 
♦  How do you know how much performance improvement 

you can obtain?  
•  Why is it hard to know? 

♦  Many problems are too hard to solve without extreme 
scale computing 

♦  Its getting harder and harder to provide performance 
without specialized hardware 
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Blue Waters Computing System 

Sonexion: 26 PBs 

>1 TB/sec 

100 GB/sec 

10/40/100 Gb 
Ethernet Switch 

Spectra Logic: 300 PBs 

120+ Gb/sec 

WAN 

IB Switch 



5 

Heart of Blue Waters: Two Chips 

AMD	  Interlagos	  
157	  GF	  peak	  performance	  

Features:	  
	  2.3-‐2.6	  GHz	  
	  8	  core	  modules,	  16	  threads	  
	  On-‐chip	  Caches	  
	   	  L1	  (I:8x64KB;	  D:16x16KB)	  
	   	  L2	  (8x2MB)	  
	  Memory	  Subsystem	  
	   	  Four	  memory	  channels	  
	   	  51.2	  GB/s	  bandwidth	  

NVIDIA	  Kepler	  
1,400	  GF	  peak	  performance	  

Features:	  
	  15	  Streaming	  multiprocessors	  (SMX)	  
	   	  SMX:	  192	  sp	  CUDA	  cores,	  64	  dp	   	  
	  units,	  32	  special	  function	  units	  
	   	  L1	  caches/shared	  mem	  (64KB,	  48KB)	  
	   	  L2	  cache	  (1536KB)	  
	  Memory	  subsystem	  
	  	  	  Six	  memory	  channels	  
	   	  180	  GB/s	  bandwidth 	  	  



6 

What is an Extreme Scale 
System Today? 

•  Tianhe 2 (China): 
♦ 16,000 nodes, each with 2 Intel Ivy Bridge 

Xeon processors and 3 Xeon Phi 
coprocessors 

♦ 3,120,000 cores 
♦  Interconnect is a “fat tree” of 13 switches, 

each with 576 ports 
•  Sequoia (USA): 

♦  IBM Blue Gene/Q.  98,304 nodes, each with 
16 (+1) cores 

♦  Interconnect is 5 dimensional torus 
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Likely Directions for Extreme 
Scale Systems 

•  5 Years (2020) 
♦  Peak performance over 1 ExaFLOPs (1018 ops/sec) 
♦  100k “nodes” 
♦  Heterogeneous nodes 

•  10 Years (2025) 
♦  Peak performance over 30 ExaFLOPs 
♦  Computing distributed throughout node and memory 

•  15 Years (2030) 
♦  Peak performance over 100 ExaFLOPs 
♦  Radically different systems emerging 

•  New digital logic, e.g., nanotubes 
•  New computing models, e.g., quantum or molecular 
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Why Performance Modeling? 

• What is the goal? 
♦ It is not precise predictions 
♦ It is insight into whether a code is 

achieving the performance it could, 
and if not, how to fix it 

• Performance modeling can be used  
♦ To estimate the baseline performance 
♦ To estimate the potential benefit of a 

nontrivial change to the code 
♦ To identify the critical resource 
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What do I mean by 
Performance Modeling? 

•  Actually two different models 
♦  First, an analytic expression based on the application 

code 
♦  Second, an analytic expression based on the 

application’s algorithm and data structures 
•  Note that a series of measurements from 

benchmarks are not a performance model  
•  Why this sort of modeling 

♦  The obvious: extrapolation to other systems, such as 
scalability in nodes or different interconnect 

♦  Also: comparison of the two models with observed 
performance can identify 

•  Inefficiencies in compilation/runtime 
•  Mismatch in developer expectations 
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Different Philosophies for 
Performance Models 

•  Simulation: 
♦ Very accurate prediction, little insight 

beyond specifics of the simulation itself 
•  Traditional Performance Modeling (PM): 

♦  Focuses on accurate predictions 
♦ Tool for computer scientists, not application 

developers 
•  PM as part of the software engineering process 

♦ PM for design, tuning and optimization 
♦ PMs are developed with algorithms and 

used in each step of the development cycle 
Ø Performance Engineering 
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Example 

•  Lets look at a simple example 
•  Matrix-matrix multiply 

♦ Classic example, often used in discussion of 
compiler optimizations 

♦ Core of the “HPLinpack” benchmark 
♦ Simple to express:  In Fortran,  

do i=1, n 
   do j=1,n 
       c(i,j) = 0 
       do k=1,n 
            c(i,j) = c(i,j) + a(i,k) * b(k,j) 
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Performance Estimate 

•  How fast should this run? 
♦ Standard complexity analysis in numerical 

analysis counts floating point operations 
♦ Our matrix-matrix multiply algorithm has 

2n3 floating point operations 
•  3 nested loops, each with n iterations 
•  1 multiply, 1 add in each inner iteration 

♦  For n=100, 2x106 operations, or about 1 
msec on a 2GHz processor :) 

♦  For n=1000, 2x109 operations, or about 1 
sec 
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The Reality 

• N=100 
♦ 1818 MF (1.1ms) 

• N=1000 
♦ 335 MF (6s) 

• What this tells us: 
♦ Obvious expression of algorithms are 

not transformed into leading 
performance. 
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Thinking about Performance 

•  The performance 
model assumes 
the computer 
looks like the 
figure on the right 
♦ Memory is 

infinitely large 
♦ Memory is 

infinitely fast  

CPU 

Memory 
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Thinking about Performance 

•  We will incrementally 
improve our performance 
models by adding features to 
our model of the computer 
hardware 
♦  That model of the computer 

hardware is a major part of 
what is often called an 
execution model 

•  In the first enhancement, 
lets make memory not 
infinitely fast 

CPU 

Memory 
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A Simple Performance Model 

• Use the following: 
♦ Number of operations (e.g., floating 

point multiply) 
♦ Number of loads from memory 
♦ Number of stores to memory 

• We are ignoring for now the many 
features of an architecture that are 
used to optimize performance 
♦ We will cover many of them during 

the class 
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A Simple Example 

• Consider this code: 
Do i=1,n 

 y(i) = a*x(i) + y(i) 
enddo 

• 2n operations (floating add, 
floating multiply) 

• 2n Loads (x(i) and y(i) for i=1 to 
n) 

• N Stores (y(i)) 
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Performance Model 

• Assume that 
c = time for operation 
r = time to read an element 
w = time to write an element 

• Then a very crude estimate of the 
time for this operation is 
T = n(2c + 2r + w) 

• Call this a model because it is too 
crude to be an estimate 
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Some Comments on This 
Model 

• Many analysis of algorithms set r 
and w to zero 

• We will spend much of our time 
considering different ways to 
model communication time 
♦ Load and Store to memory 
♦ Sharing of data between threads 
♦ Communication between nodes in a 

parallel computer 
♦ Load and Store to a file system 
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Discussion Topics for Matrix-
Matrix Multiply 

• Why do you think the algorithm 
runs slowly at large sizes? 

• Why do you think the compiler 
doesn’t do a better job? 

• What about other algorithms such 
as Strassen’s algorithm? 
♦ How would that algorithm change this 

analysis?  


