
Lecture 2: Basic Performance
Models For Extreme Scale

Systems
William Gropp

www.cs.illinois.edu/~wgropp

2

Performance is Key

•  Parallelism is (usually) used to get more
performance
♦ How do you know if you are making good

(not even best) use of a parallel system?
•  Even measurement-based approaches

can be (and all to often are) performed
without any real basis of comparison
♦ The key questions are

• Where is most of the time spent?
• What is the achievable performance, and how do

I get there?
♦ This latter is often overlooked, leading to

erroneous conclusions based on the
(immature) state of compiler / runtime /
code implementations

3

Tuning A (Parallel) Code

•  Typical Approach
♦  Profile code. Determine where most time is being spent
♦  Study code. Measure absolute performance, look at

performance counters, compare FLOP rates
♦  Improve code that takes a long time, reduce time spent in

“unproductive” operations
•  Why this isn’t the right Approach:

♦  How do you know when you are done?
♦  How do you know how much performance improvement

you can obtain?
•  Why is it hard to know?

♦  Many problems are too hard to solve without extreme
scale computing

♦  Its getting harder and harder to provide performance
without specialized hardware

4

Blue Waters Computing System

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: 300 PBs

120+ Gb/sec

WAN

IB Switch

5

Heart of Blue Waters: Two Chips

AMD	 Interlagos	
157	 GF	 peak	 performance	

Features:	
	 2.3-‐2.6	 GHz	
	 8	 core	 modules,	 16	 threads	
	 On-‐chip	 Caches	
	 	 L1	 (I:8x64KB;	 D:16x16KB)	
	 	 L2	 (8x2MB)	
	 Memory	 Subsystem	
	 	 Four	 memory	 channels	
	 	 51.2	 GB/s	 bandwidth	

NVIDIA	 Kepler	
1,400	 GF	 peak	 performance	

Features:	
	 15	 Streaming	 multiprocessors	 (SMX)	
	 	 SMX:	 192	 sp	 CUDA	 cores,	 64	 dp	 	
	 units,	 32	 special	 function	 units	
	 	 L1	 caches/shared	 mem	 (64KB,	 48KB)	
	 	 L2	 cache	 (1536KB)	
	 Memory	 subsystem	
	 	 	 Six	 memory	 channels	
	 	 180	 GB/s	 bandwidth 	 	

6

What is an Extreme Scale
System Today?

•  Tianhe 2 (China):
♦ 16,000 nodes, each with 2 Intel Ivy Bridge

Xeon processors and 3 Xeon Phi
coprocessors

♦ 3,120,000 cores
♦  Interconnect is a “fat tree” of 13 switches,

each with 576 ports
•  Sequoia (USA):

♦  IBM Blue Gene/Q. 98,304 nodes, each with
16 (+1) cores

♦  Interconnect is 5 dimensional torus

7

Likely Directions for Extreme
Scale Systems

•  5 Years (2020)
♦  Peak performance over 1 ExaFLOPs (1018 ops/sec)
♦  100k “nodes”
♦  Heterogeneous nodes

•  10 Years (2025)
♦  Peak performance over 30 ExaFLOPs
♦  Computing distributed throughout node and memory

•  15 Years (2030)
♦  Peak performance over 100 ExaFLOPs
♦  Radically different systems emerging

•  New digital logic, e.g., nanotubes
•  New computing models, e.g., quantum or molecular

8

Why Performance Modeling?

• What is the goal?
♦ It is not precise predictions
♦ It is insight into whether a code is

achieving the performance it could,
and if not, how to fix it

• Performance modeling can be used
♦ To estimate the baseline performance
♦ To estimate the potential benefit of a

nontrivial change to the code
♦ To identify the critical resource

9

What do I mean by
Performance Modeling?

•  Actually two different models
♦  First, an analytic expression based on the application

code
♦  Second, an analytic expression based on the

application’s algorithm and data structures
•  Note that a series of measurements from

benchmarks are not a performance model
•  Why this sort of modeling

♦  The obvious: extrapolation to other systems, such as
scalability in nodes or different interconnect

♦  Also: comparison of the two models with observed
performance can identify

•  Inefficiencies in compilation/runtime
•  Mismatch in developer expectations

10

Different Philosophies for
Performance Models

•  Simulation:
♦ Very accurate prediction, little insight

beyond specifics of the simulation itself
•  Traditional Performance Modeling (PM):

♦  Focuses on accurate predictions
♦ Tool for computer scientists, not application

developers
•  PM as part of the software engineering process

♦ PM for design, tuning and optimization
♦ PMs are developed with algorithms and

used in each step of the development cycle
Ø Performance Engineering

11

Example

•  Lets look at a simple example
•  Matrix-matrix multiply

♦ Classic example, often used in discussion of
compiler optimizations

♦ Core of the “HPLinpack” benchmark
♦ Simple to express: In Fortran,

do i=1, n
 do j=1,n
 c(i,j) = 0
 do k=1,n
 c(i,j) = c(i,j) + a(i,k) * b(k,j)

12

Performance Estimate

•  How fast should this run?
♦ Standard complexity analysis in numerical

analysis counts floating point operations
♦ Our matrix-matrix multiply algorithm has

2n3 floating point operations
•  3 nested loops, each with n iterations
•  1 multiply, 1 add in each inner iteration

♦  For n=100, 2x106 operations, or about 1
msec on a 2GHz processor :)

♦  For n=1000, 2x109 operations, or about 1
sec

13

The Reality

• N=100
♦ 1818 MF (1.1ms)

• N=1000
♦ 335 MF (6s)

• What this tells us:
♦ Obvious expression of algorithms are

not transformed into leading
performance.

14

Thinking about Performance

•  The performance
model assumes
the computer
looks like the
figure on the right
♦ Memory is

infinitely large
♦ Memory is

infinitely fast

CPU

Memory

15

Thinking about Performance

•  We will incrementally
improve our performance
models by adding features to
our model of the computer
hardware
♦  That model of the computer

hardware is a major part of
what is often called an
execution model

•  In the first enhancement,
lets make memory not
infinitely fast

CPU

Memory

16

A Simple Performance Model

• Use the following:
♦ Number of operations (e.g., floating

point multiply)
♦ Number of loads from memory
♦ Number of stores to memory

• We are ignoring for now the many
features of an architecture that are
used to optimize performance
♦ We will cover many of them during

the class

17

A Simple Example

• Consider this code:
Do i=1,n

 y(i) = a*x(i) + y(i)
enddo

• 2n operations (floating add,
floating multiply)

• 2n Loads (x(i) and y(i) for i=1 to
n)

• N Stores (y(i))

18

Performance Model

• Assume that
c = time for operation
r = time to read an element
w = time to write an element

• Then a very crude estimate of the
time for this operation is
T = n(2c + 2r + w)

• Call this a model because it is too
crude to be an estimate

19

Some Comments on This
Model

• Many analysis of algorithms set r
and w to zero

• We will spend much of our time
considering different ways to
model communication time
♦ Load and Store to memory
♦ Sharing of data between threads
♦ Communication between nodes in a

parallel computer
♦ Load and Store to a file system

20

Discussion Topics for Matrix-
Matrix Multiply

• Why do you think the algorithm
runs slowly at large sizes?

• Why do you think the compiler
doesn’t do a better job?

• What about other algorithms such
as Strassen’s algorithm?
♦ How would that algorithm change this

analysis?

