Lecture 7: Matrix Transpose

William Gropp

www.cs.illinois.edu/~wgropp
Simple Example: Matrix Transpose

- do $j=1,n$
 - do $i=1,n$
 - $b(i,j) = a(j,i)$
 - enddo
- enddo

- No temporal locality (data used once)
- Spatial locality only if $(\text{words/cacheline}) \times n$ fits in cache
 - Otherwise, each column of a may be read (words/cacheline) times
- Transpose is *semilocal* at best
Performance Models

• What is the performance model for transpose?
 ♦ N^2 loads and N^2 stores
 ♦ Simple model predicts STREAM performance
 • It's just a copy, after all
Example Results

<table>
<thead>
<tr>
<th>Matrix Size</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>100x100</td>
<td>4700 MB/s</td>
</tr>
<tr>
<td>400x400</td>
<td>1200 MB/s</td>
</tr>
<tr>
<td>2000x2000</td>
<td>705 MB/s</td>
</tr>
<tr>
<td>8000x8000</td>
<td>*did not complete</td>
</tr>
</tbody>
</table>

- Why is the performance so low?
 - Compiler fails to manage spatial locality in the large matrix cases
 - Why does performance collapse at 8000x8000 matrix
 - May seem large, but requires 1GB of memory
 - Should fit into main memory

- What might be done to improve performance?
Question

- Model the performance of a transpose with this simple model:
 - Assume that the size of the cache is just a few cachelines. Then
 - Access to consecutive elements in memory will read from the cacheline (spatial locality)
 - Access to nonconsecutive elements in memory (the b array in our example) will not be in the available cachelines, forcing a full cacheline to be accessed for every store. Assume a cacheline stores 64 bytes.
 - What is the time cost of a transpose with this model? Use the STREAM performance data as the sustained memory performance in moving data to or from memory to cache
A Simple Performance Model for Transpose

- If source and destination matrices fit in cache, then
 - $T = n^2(r_c + w_c)$
- If the source and destination matrices do not fit in cache
 - $T = n^2(r + Lw)$
 - Where L is the number of elements per cacheline.
- Note that these are not sharp predictions but (approximate) bounds
Let's Look at One Case

- My Laptop
- STREAM performance in Fortran, for 20,000,000 element array
 - 11,580 MB/sec
- Simple Fortran transpose test
 - gfortran –o trans –O1 trans.f
 - Low optimization to avoid “smart compiler” issues with this demonstration
- Performance bound (model):
 - Assume r = w = 1/11,580e6
 - T=n²(r+8w) = n²(9r)
 - Rate = n²/T = 1/9r
Transpose Performance
Observations

- Cache effect is obvious
 - Performance plummets after \(n=1000 \)
 - Need to hold at least one row of target matrix to get spatial locality
 - \(N \times L \) bytes (64k for \(N=1000, L=64 \) bytes)

- STREAM estimate gives reasonable but not tight bound

- Achievable performance for the operation (transpose) is much higher (effectively COPY)
Yes Another Complication

• How many loads and stores from memory are required by \(a=b \)?
 - Natural answer is
 - One load (b), one store (a)
 - For cache-based systems, the answer may be
 - Two loads: Cacheline containing b and cacheline containing a
 - One store: Cacheline containing a
 - Sometimes called write allocate
And Another Complication

- When do writes from cache back to memory occur
 - When the store happens (i.e., immediately)
 - This is called “write through”
 - Simplifies issues with multicore designs
 - Increases amount of data written to memory
 - When the cache line is needed
 - This is called “write back”
 - Reduces amount of data written to memory
 - Complicates hardware in multicore designs

- “Server” systems tend to have write-back; lower performance systems have write-through
Loop Transformations

• Reorder the operations so that spatial locality is preserved

• Break loops into blocks
 • Strip mining
 • Loop reordering
Strip Mining

- Break a loop up into blocks of consecutive elements
- Do $k=1,n$

 $a(k) = f(k)$

 enddo

- Becomes

 do $kk=1, n, \text{stride}$

 do $k=kk, \min(n, kk+\text{stride}-1)$

 $a(k) = f(k)$

 enddo

 enddo

- For C programmers, do $k=1,n,\text{stride}$ is like

 for($k=1; k<n; k+=\text{stride}$)
Strip Mining

- Applied to both loops in the transpose code,
- \(\text{do } j=1,n \)
 \(\text{do } i=1,n \)
 Becomes
 \(\text{do } jj=1,n, \text{stride} \)
 \(\text{do } j=jj, \text{min}(n,jj+\text{stride}-1) \)
 \(\text{do } ii=1,n, \text{stride} \)
 \(\text{do } i=ii, \text{min}(n,ii+\text{stride}-1) \)
- Still the same access pattern, so we need another step ...
Loop Reordering

• Move the loop over j inside the ii loop:
 do jj=1,n,stride
 do ii=1,n,stride
 do j=jj,min(n,jj+stride-1)
 do i=ii,min(n,ii+stride-1)
 b(i,j) = a(j,i)

• Value of stride chosen to fit in cache
 ♦ Repeat the process for each level of cache that is smaller than the matrices
 • Even a 1000 x 1000 matrix is 8 MB, = 16MB for both A and B. Typical commodity processor L2 is 2MB or smaller, so even modest matrices need to be blocked for both L1 and L2
Multiple levels of Cache

• Blocking is not free
 ♦ There is overhead with each extra loop, and with each block
 • Implies that blocks should be as large as possible and still ensure spatial locality

• Moving data between each level of cache is not free
 ♦ Blocking for each level of cache may be valuable
 ♦ Block sizes must be selected for each level
Example Times for Matrix Transpose

<table>
<thead>
<tr>
<th>5000x5000 transpose (a very large matrix)</th>
<th>Unblocked</th>
<th>L1 Blocked</th>
<th>L1/L2 Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>(20,100,g77)</td>
<td>2.6</td>
<td>0.55</td>
<td>0.46</td>
</tr>
<tr>
<td>(32,256,g77)</td>
<td>2.6</td>
<td>0.46</td>
<td>0.42</td>
</tr>
<tr>
<td>(32,256,pgf77,main)</td>
<td>0.58</td>
<td>0.48</td>
<td>0.55</td>
</tr>
<tr>
<td>Same, within a subroutine</td>
<td>2.8</td>
<td>0.55</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Observations

• Blocking for fast (L1) cache provides significant benefit

• Smart compilers can make this transformations
 ♦ See pgf77 results

• But only if they have enough information about the data
 ♦ When the array passed into a routine instead of everything in the main program, results no better than g77

• Parameters are many and models are (often) not accurate enough to select parameters
Why Won’t The Compiler Do This?

- Blocking adds overhead
 - More operations required
- Best parameter values (stride) not always easy to select
 - May need a different stride for the I and the J loop
- Thus
 - Best code depends on problem size, for small problems, simplest code is best
- Notes some compilers support annotations to perform particular transformations, such as loop unrolling, or to provide input on loop sizes (the “n”)
Why Don’t Programmers Do This?

- Same reason compilers often don’t – not easy, not always beneficial
- But you have an advantage
 - You can form a performance expectation and compare it to what you find in the code
 - Measure!
 - You often know more about the loop ranges (n in the transpose)
- This is still hard. Is there a better way?
 - Sort of. We’ll cover that in the next lecture.
Questions

• Develop a performance bound for this operation
 ♦ do i=1,n
 a(i*stride) = b(i)
 enddo
 ♦ How does your model depend on stride?
 ♦ What changes in your model if the cache uses a write-allocate strategy?
 ♦ What changes if the copy is
 do i=1,n
 a(i) = b(i+stride)
 enddo

• Note: such a “strided copy” is not uncommon and may be optimized by the hardware
 ♦ This model does not take that into account
Question

• In blocking the transpose, we used the same block size for the rows and column. Is this necessary? Why might a different value make sense?