
Lecture 11: Matrix-Matrix
Multiply

William Gropp
www.cs.illinois.edu/~wgropp

2

Performance for a Common
Calculation

• Combine memory issues with
computations
♦ Spatial and Temporal locality
♦ Dependencies on computation

• Dense matrix-matrix multiply a
good example
♦ Lots of potential to avoid extra

memory operations
♦ Lots of potential to arrange

computation for better performance

3

Another Example:
Matrix-Matrix Multiply (ddot form)

•  do i=1,n
 do j=1,n
 do k=1,n
 c(i,j) = c(i,j) + a(i,k) * b(k,j)

=

•  Like transpose, but two new features:
•  Perform a calculation (we’ll see why this is important later)
•  Reuse of data: n2 data used for n3 operations

4

Memory Locality for Matrix-
Matrix Multiply

•  Problems:
♦ Only one value in register reused (C(i,j))
♦  If cache line size * n > L1 cache size, there

is a miss on every load of A
♦ Every cache line size (in doubles) may

incurs a long delay as each cacheline is
loaded

•  How problems are addressed
♦ Can reuse values in C, A, and B
♦ Can block matrix A
♦ May be able to prefetch (more later)

5

Reusing Data

•  Load data into register
•  Use several times (each load, even from

cache, is at least a cycle)
•  Use loop unrolling to expose register use

♦  …
c(i,j) += a(i,k) * b(k,j)
c(i+1,j) += a(i+1,k) * b(k,j)
c(i,j+1) += a(i,k) * b(k,j+1)
c(i+1,j+1) += a(i+1,k) * b(k,j+1)

•  Each a(i,j) etc. used twice
♦  Cuts the numbers of loads in half
♦  But requires enough registers to hold all items

•  4 registers for a(I,k), a(I+1,k), b(k,j), b(k,j+1) plus 2
registers for I, j, and 4 registers for address of a(I,k),
address of b(k,j), address of c(I,j), and address of c(I,j
+1).

6

Blocking for Cache

• Reuse data in cache by blocking

Block for each level of memory hierarchy

7

Blocked, Unrolled MxM
(one level only)

•  Do kk=1,n,stride
 do ii=1,n,stride
 do j=1,n-2,2
 do i=ii,min(n,ii+stride-1),2
 do k=kk,min(n,kk+stride-1)
 c(i,j) += a(i,k) * b(k,j)
 c(i+1,j) += a(i+1,k)* b(k,j)
 c(i,j+1) += a(i,k) * b(k,j+1)
 c(i+1,j+1) += a(i+1,k)* b(k,j+1)

•  This is only a first step. Achieving good
performance for this simple operation requires
blocking for each level of cache, available
registers, (and TLB – for huge problems).

8

Considerations for Blocking

•  Block for Registers
♦ Be careful not to exceed the number of

available floating point registers
•  Block for load-store/floating point ratio

♦  Loop over cache blocks
♦  (Choose size to allow load latency to be

hidden by floating point work - we’ll see
this later)

•  Block for cache size
•  Block for cache bandwidth

♦ To match time to move data between
memory/cache to the time spent operating
on data within the cache

9

Why Don’t Compilers Perform
These Transformations?

•  Dense Matrix-Matrix Product
♦  Most studied numerical program by compiler writers
♦  Core of some important applications
♦  More importantly, the core operation in High Performance

Linpack
•  Benchmark used to “rate” the top 500 fastest systems

♦  Should give optimal performance…
•  But

♦  Blocking changes the order of evaluation; floating point
arithmetic is not associative

•  Thus it is wrong for the compiler to perform blocking
transformations

♦  While loop unrolling safe for most matrix sizes, blocking is
appropriate only for large matrices (e.g., don’t block for
cache for 4x4 or 16x16 matrices).

•  If the matrices are smaller, the blocked code can be slower
•  The result is a gap between performance realized by

compiled code and the achievable performance

10

From Atlas

Compiler

Hand-tuned

Performance Gap in Compiled
Code

Enormous effort required to get good performance

Large gap between
natural code and
specialized code

11

Comments

•  Memory motion dominates the
performance of many operations

•  Sustained memory bandwidth can
provide a better guide to performance

•  But hardware architecture introduces
features important for performance that
are not visible in the programming
language
♦ A good thing most of the time
♦ Not a good thing when performance is

important

12

Comments

•  Very high quality compilers can perform
many of these transformations
♦ Note that some are not exact for floating

point arithmetic
♦ High levels of optimization may assume

floating point arithmetic is associative
•  Some even detect matrix-matrix

multiply
♦ Performance for similar-looking operations

may not be as good

13

Matrix-Matrix Multiply
Performance

• There are many things to take into
account in creating a fast matrix-
matrix multiply routine
♦ We’ve just touched on a few to

illustrate performance issues and
models

♦ You can find more information,
including tutorials, focused on this
and similar dense matrix operations

