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Performance for a Common 
Calculation   

• Combine memory issues with 
computations 
♦ Spatial and Temporal locality 
♦ Dependencies on computation 

• Dense matrix-matrix multiply a 
good example 
♦ Lots of potential to avoid extra 

memory operations 
♦ Lots of potential to arrange 

computation for better performance 
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Another Example:  
Matrix-Matrix Multiply (ddot form) 

•  do i=1,n 
    do j=1,n 
        do k=1,n 
            c(i,j) = c(i,j) + a(i,k) * b(k,j) 

=

•  Like transpose, but two new features: 
•  Perform a calculation (we’ll see why this is important later) 
•  Reuse of data: n2 data used for n3 operations 
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Memory Locality for Matrix-
Matrix Multiply 

•  Problems: 
♦ Only one value in register reused (C(i,j)) 
♦  If cache line size * n > L1 cache size, there 

is a miss on every load of A 
♦ Every cache line size (in doubles) may 

incurs a long delay as each cacheline is 
loaded 

•  How problems are addressed 
♦ Can reuse values in C, A, and B 
♦ Can block matrix A 
♦ May be able to prefetch (more later) 
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Reusing Data 

•  Load data into register 
•  Use several times (each load, even from 

cache, is at least a cycle) 
•  Use loop unrolling to expose register use 

♦  … 
c(i,j)         += a(i,k)     * b(k,j) 
c(i+1,j)     += a(i+1,k) * b(k,j) 
c(i,j+1)     += a(i,k)     * b(k,j+1) 
c(i+1,j+1) += a(i+1,k) * b(k,j+1) 

•  Each a(i,j) etc. used twice 
♦  Cuts the numbers of loads in half 
♦  But requires enough registers to hold all items 

•  4 registers for a(I,k), a(I+1,k), b(k,j), b(k,j+1) plus 2 
registers for I, j, and 4 registers for address of a(I,k), 
address of b(k,j), address of c(I,j), and address of c(I,j
+1).   
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Blocking for Cache 

• Reuse data in cache by blocking 

Block for each level of memory hierarchy  
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Blocked, Unrolled MxM  
(one level only) 

•  Do kk=1,n,stride 
    do ii=1,n,stride 
        do j=1,n-2,2 
            do i=ii,min(n,ii+stride-1),2 
                do k=kk,min(n,kk+stride-1) 
                    c(i,j)         += a(i,k)    * b(k,j) 
                    c(i+1,j)     += a(i+1,k)* b(k,j) 
                    c(i,j+1)     += a(i,k)    * b(k,j+1) 
                    c(i+1,j+1) += a(i+1,k)* b(k,j+1) 

•  This is only a first step.  Achieving good 
performance for this simple operation requires 
blocking for each level of cache, available 
registers, (and TLB – for huge problems). 
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Considerations for Blocking 

•  Block for Registers 
♦ Be careful not to exceed the number of 

available floating point registers 
•  Block for load-store/floating point ratio 

♦  Loop over cache blocks 
♦  (Choose size to allow load latency to be 

hidden by floating point work - we’ll see 
this later) 

•  Block for cache size 
•  Block for cache bandwidth 

♦ To match time to move data between 
memory/cache to the time spent operating 
on data within the cache 
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Why Don’t Compilers Perform 
These Transformations? 

•  Dense Matrix-Matrix Product  
♦  Most studied numerical program by compiler writers 
♦  Core of some important applications 
♦  More importantly, the core operation in High Performance 

Linpack 
•  Benchmark used to “rate” the top 500 fastest systems 

♦  Should give optimal performance…  
•  But 

♦  Blocking changes the order of evaluation; floating point 
arithmetic is not associative 

•  Thus it is wrong for the compiler to perform blocking 
transformations 

♦  While loop unrolling safe for most matrix sizes, blocking is 
appropriate only for large matrices (e.g., don’t block for 
cache for 4x4 or 16x16 matrices). 

•  If the matrices are smaller, the blocked code can be slower 
•  The result is a gap between performance realized by 

compiled code and the achievable performance 
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From Atlas 

Compiler 

Hand-tuned 

Performance Gap in Compiled 
Code 

Enormous effort required to get good performance 

Large gap between 
natural code and 
specialized code  
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Comments 

•  Memory motion dominates the 
performance of many operations 

•  Sustained memory bandwidth can 
provide a better guide to performance 

•  But hardware architecture introduces 
features important for performance that 
are not visible in the programming 
language 
♦ A good thing most of the time 
♦ Not a good thing when performance is 

important 
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Comments 

•  Very high quality compilers can perform 
many of these transformations 
♦ Note that some are not exact for floating 

point arithmetic 
♦ High levels of optimization may assume 

floating point arithmetic is associative 
•  Some even detect matrix-matrix 

multiply 
♦ Performance for similar-looking operations 

may not be as good 
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Matrix-Matrix Multiply 
Performance 

• There are many things to take into 
account in creating a fast matrix-
matrix multiply routine 
♦ We’ve just touched on a few to 

illustrate performance issues and 
models 

♦ You can find more information, 
including tutorials, focused on this 
and similar dense matrix operations  


