
Lecture 24: Buffering and
Message Protocols

William Gropp
www.cs.illinois.edu/~wgropp

2

More On Communication

• How does the MPI implementation
orchestrate the communication of
data from one process to another?

3

What is message passing?

• Data transfer plus synchronization

•  Requires cooperation of sender and
receiver

•  Cooperation not always apparent in code

Data Process 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time

4

Quick Review of Message Passing
Terms in MPI

•  Basic terms
♦ nonblocking - Operation does not wait for

completion
♦  synchronous - Completion of send requires

initiation (but not completion) of receive
♦  ready - Correct send requires a matching

receive
♦ asynchronous - communication and

computation take place simultaneously, not
an MPI concept (implementations may use
asynchronous methods)

5

Message protocols

•  Message consists of “envelope” and data
♦ Envelope contains tag, communicator, length,

source information, plus impl. private data
•  Short

♦ Message data (message for short) sent with
envelope

•  Eager
♦ Message sent assuming destination can store

•  Rendezvous
♦ Message not sent until destination oks

6

MPI on Distributed Shared
Memory Systems

•  Message passing is a good way to use
distributed shared memory (DSM) machines
because it provides a way to express memory
locality.

•  Put
♦  Sender puts to destination memory (user or MPI

buffer). Like Eager.
•  Get

♦  Receiver gets data from sender or MPI buffer. Like
Rendezvous.

•  Short, long, rendezvous versions of these

7

Message Protocol Details

•  Eager not Rsend, rendezvous not Ssend
resp., but related

•  User versus system buffer space
•  Packetization
•  Collective operations
•  Datatypes, particularly non-contiguous

♦ Handling of important special cases
•  Constant stride
•  Contiguous structures

8

Eager Protocol

Process 0

Process 1

Time

Data
Data

Data
Data

Data
Data

Data
Data

Data

•  Data delivered to process 1
♦ No matching receive may exist; process 1

must then buffer and copy.

9

Eager Features

• Reduces synchronization delays
• Simplifies programming (just

MPI_Send)
• Requires significant buffering
• May require active involvement of

CPU to drain network at receiver’s
end

• May introduce additional copy
(buffer to final destination)

10

How Scalable is Eager Delivery?

•  Buffering must be reserved for arbitrary
senders

•  User-model mismatch (often expect buffering
allocated entirely to “used” connections).

•  Common approach in implementations is to
provide same buffering for all members of
MPI_COMM_WORLD; this is optimizing for
non-scaleable computations

•  Scalable implementations that exploit message
patterns are possible (but not widely
implemented)

11

Rendezvous Protocol

•  Envelope delivered first
•  Data delivered when user-buffer available

♦ Only buffering of envelopes required

Data Process 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time

12

Rendezvous Features

• Robust and safe
♦ (except for limit on the number of

envelopes…)
• May remove copy (user to user

direct)
• More complex programming

(waits/tests)
• May introduce synchronization

delays (waiting for receiver to ok
send)

13

Short Protocol

• Data is part of the envelope
• Otherwise like eager protocol
• May be performance optimization

in interconnection system for short
messages, particularly for
networks that send fixed-length
packets (or cache lines)

14

User and System Buffering

• Where is data stored (or staged)
while being sent?
♦ User’s memory

• Allocated on the fly
• Preallocated

♦ System memory
• May be limited
• Special memory may be faster

15

Implementing MPI_Isend

•  Simplest implementation is to always
use rendezvous protocol:
♦ MPI_Isend delivers a request-to-send

control message to receiver
♦ Receiving process responds with an ok-to-

send
• May or may not have matching MPI receive; only

needs buffer space to store incoming message
♦ Sending process transfers data

•  Wait for MPI_Isend request
♦ wait for ok-to-send message from receiver
♦ wait for data transfer to be complete on

sending side

16

Alternatives for MPI_Isend

•  Use a short protocol for small messages
♦ No need to exchange control messages
♦ Need guaranteed (but small) buffer space

on destination for short message envelope
♦ Wait becomes a no-op

•  Use eager protocol for modest sized
messages
♦ Still need guaranteed buffer space for both

message envelope and eager data on
destination

♦ Avoids exchange of control messages

17

Implementing MPI_Send

•  Can’t use eager always because this
could overwhelm the receiving process
 if (rank != 0) MPI_Send(100 MB of data)
 else receive 100 MB from each process

•  Would like to exploit the blocking nature
(can wait for receive)

•  Would like to be fast
•  Select protocol based on message size

(and perhaps available buffer space at
destination)
♦ Short and/or eager for small messages
♦ Rendezvous for longer messages

18

Implementing MPI_Rsend

•  Just use MPI_Send; no advantage
for users

• Use eager always (or short if
small)
♦ even for long messages

19

Choosing MPI Send Modes

• No perfect choice. However:
♦ Eager is faster than rendezvous until

• Data is unexpected: 2*latency is smaller
than the time to copy from buffer

♦ Ready can force Eager, but requires
prepost of receive
• Best when data is long but not too long

(measured in terms of s/r)
♦ Synchronous good when MPI

implementation has inadequate flow
control and messages are large

20

Latency and Bandwidth

•  Simplest model s + r n
•  s includes both hardware (gate delays)

and software (context switch, setup)
•  r includes both hardware (raw

bandwidth of interconnection and
memory system) and software
(packetization, copies between user and
system)

•  Head-to-head and pingpong values may
differ

21

•  Bandwidth is the inverse of the slope of the line
time = latency + (1/rate) size_of_message

•  For performance estimation purposes, latency is
the limit(n➜0) of the time to send n bytes

•  Latency is sometimes described as “time to send
a message of zero bytes”. This is true only for
the simple model. The number quoted is
sometimes misleading.

Interpreting Latency and
Bandwidth

Latency

1/slope=Bandwidth

Message Size

Time
to Send
Message

Not latency

22

Try It Yourself: Timing MPI
Operations

•  Estimate the latency and bandwidth for
some MPI operation (e.g., Send/Recv,
Bcast, Ssend/Irecv-Wait)
♦ Make sure all processes are ready before

starting the test
♦ How repeatable are your measurements?
♦ How does the performance compare to the

performance of other operations (e.g.,
memcpy, floating multiply)?

23

Packetization, syncronization,
and contention

Packetization

•  Some networks send data in discrete
chunks called packets

Process 0

Process 1

Last Packet may be shorter

Data sent in individual packets

Introduces a ceil(n/packet_size) term

Staircase appearance of performance graph

24

Example of Packetization

Packets contain 232
bytes of data. (first is
200 bytes, so MPI header
is probably 32 bytes).

Data from mpptest,
available at
ftp://ftp.mcs.anl.gov/
pub/mpi/misc/
perftest.tar.gz

