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More On Communication 

• How does the MPI implementation 
orchestrate the communication of 
data from one process to another? 
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What is message passing? 

• Data transfer plus synchronization 

•  Requires cooperation of sender and 
receiver 

•  Cooperation not always apparent in code 
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Quick Review of Message Passing 
Terms in MPI 

•  Basic terms  
♦ nonblocking - Operation does not wait for 

completion 
♦  synchronous - Completion of send requires 

initiation (but not completion) of receive 
♦  ready - Correct send requires a matching 

receive 
♦ asynchronous - communication and 

computation take place simultaneously, not 
an MPI concept (implementations may use 
asynchronous methods) 
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Message protocols 

•  Message consists of “envelope” and data 
♦ Envelope contains tag, communicator, length, 

source information, plus impl. private data 
•  Short 

♦ Message data (message for short) sent with 
envelope 

•  Eager 
♦ Message sent assuming destination can store 

•  Rendezvous 
♦ Message not sent until destination oks 
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MPI on Distributed Shared 
Memory Systems 

•  Message passing is a good way to use 
distributed shared memory (DSM) machines 
because it provides a way to express memory 
locality. 

•  Put 
♦  Sender puts to destination memory (user or MPI 

buffer).  Like Eager. 
•  Get 

♦  Receiver gets data from sender or MPI buffer.  Like 
Rendezvous. 

•  Short, long, rendezvous versions of these 
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Message Protocol Details 

•  Eager not Rsend, rendezvous not Ssend 
resp., but related 

•  User versus system buffer space 
•  Packetization 
•  Collective operations 
•  Datatypes, particularly non-contiguous 

♦ Handling of important special cases 
•  Constant stride 
•  Contiguous structures 
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Eager Protocol 
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•  Data delivered to process 1  
♦ No matching receive may exist; process 1 

must then buffer and copy. 
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Eager Features 

• Reduces synchronization delays 
• Simplifies programming (just 

MPI_Send) 
• Requires significant buffering 
• May require active involvement of 

CPU to drain network at receiver’s 
end 

• May introduce additional copy 
(buffer to final destination) 
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How Scalable is Eager Delivery? 

•  Buffering must be reserved for arbitrary 
senders 

•  User-model mismatch (often expect buffering 
allocated entirely to “used” connections). 

•  Common approach in implementations is to 
provide same buffering for all members of 
MPI_COMM_WORLD; this is optimizing for 
non-scaleable computations 

•  Scalable implementations that exploit message 
patterns are possible (but not widely 
implemented) 
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Rendezvous Protocol 

•  Envelope delivered first 
•  Data delivered when user-buffer available 

♦ Only buffering of envelopes required 
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Rendezvous Features 

• Robust and safe 
♦ (except for limit on the number of 

envelopes…) 
• May remove copy (user to user 

direct) 
• More complex programming 

(waits/tests) 
• May introduce synchronization 

delays (waiting for receiver to ok 
send) 
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Short Protocol 

• Data is part of the envelope 
• Otherwise like eager protocol 
• May be performance optimization 

in interconnection system for short 
messages, particularly for 
networks that send fixed-length 
packets (or cache lines) 
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User and System Buffering 

• Where is data stored (or staged) 
while being sent? 
♦ User’s memory 

• Allocated on the fly 
• Preallocated 

♦ System memory 
• May be limited 
• Special memory may be faster  
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Implementing MPI_Isend 

•  Simplest implementation is to always 
use rendezvous protocol: 
♦ MPI_Isend delivers a request-to-send 

control message to receiver 
♦ Receiving process responds with an ok-to-

send 
• May or may not have matching MPI receive; only 

needs buffer space to store incoming message 
♦ Sending process transfers data 

•  Wait for MPI_Isend request 
♦ wait for ok-to-send message from receiver 
♦ wait for data transfer to be complete on 

sending side 
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Alternatives for MPI_Isend 

•  Use a short protocol for small messages 
♦ No need to exchange control messages 
♦ Need guaranteed (but small) buffer space 

on destination for short message envelope 
♦ Wait becomes a no-op 

•  Use eager protocol for modest sized 
messages 
♦ Still need guaranteed buffer space for both 

message envelope and eager data on 
destination 

♦ Avoids exchange of control messages 
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Implementing MPI_Send 

•  Can’t use eager always because this 
could overwhelm the receiving process 
    if (rank != 0) MPI_Send( 100 MB of data ) 
   else receive 100 MB from each process 

•  Would like to exploit the blocking nature 
(can wait for receive) 

•  Would like to be fast 
•  Select protocol based on message size 

(and perhaps available buffer space at 
destination) 
♦ Short and/or eager for small messages 
♦ Rendezvous for longer messages 
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Implementing MPI_Rsend 

•  Just use MPI_Send; no advantage 
for users 

• Use eager always (or short if 
small) 
♦ even for long messages 
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Choosing MPI Send Modes 

• No perfect choice.  However: 
♦ Eager is faster than rendezvous until 

• Data is unexpected: 2*latency is smaller 
than the time to copy from buffer 

♦ Ready can force Eager, but requires 
prepost of receive 
• Best when data is long but not too long 

(measured in terms of s/r) 
♦ Synchronous good when MPI 

implementation has inadequate flow 
control and messages are large 



20 

Latency and Bandwidth 

•  Simplest model s + r n 
•  s includes both hardware (gate delays) 

and software (context switch, setup) 
•  r includes both hardware (raw 

bandwidth of interconnection and 
memory system) and software 
(packetization, copies between user and 
system) 

•  Head-to-head and pingpong values may 
differ 
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•  Bandwidth is the inverse of the slope of the line  
time = latency + (1/rate) size_of_message 

•  For performance estimation purposes, latency is 
the limit(n➜0) of the time to send n bytes 

•  Latency is sometimes described as “time to send 
a message of zero bytes”.  This is true only for 
the simple model.  The number quoted is 
sometimes misleading. 

Interpreting Latency and 
Bandwidth 
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Try It Yourself: Timing MPI 
Operations 

•  Estimate the latency and bandwidth for 
some MPI operation (e.g., Send/Recv, 
Bcast, Ssend/Irecv-Wait) 
♦ Make sure all processes are ready before 

starting the test 
♦ How repeatable are your measurements? 
♦ How does the performance compare to the 

performance of other operations (e.g., 
memcpy, floating multiply)? 
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Packetization, syncronization, 
and contention 

Packetization 

•  Some networks send data in discrete 
chunks called packets 
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Example of Packetization 

Packets contain 232 
bytes of data.  (first is  
200 bytes, so MPI header 
is probably 32 bytes). 

Data from mpptest, 
available at 
ftp://ftp.mcs.anl.gov/ 
pub/mpi/misc/ 
perftest.tar.gz 


