Lecture 24: Buffering and
Message Protocols

William Gropp
www.cs.illinois.edu/~wgropp

More On Communication

e How does the MPI implementation
orchestrate the communication of
data from one process to another?

> PARALLEL@ILLINOIS

What is message passing?

e Data transfer plus synchronization

Process 0 - May | Send?

Process 1 Yes

Y

Time

e Requires cooperation of sender and
receiver

][e Cooperation not always apparent in code
. PARALLEL@ILLINOIS

Quick Review of Message Passing
Terms in MPI

e Basic terms

¢ nonblocking - Operation does not wait for
completion

¢ synchronous - Completion of send requires
initiation (but not completion) of receive

¢ ready - Correct send requires a matching
receive

¢ asynchronous - communication and
computation take place simultaneously, not
an MPI concept (implementations may use
asynchronous methods)

. PARALLEL@ILLINOIS

Message protocols

Message consists of “envelope” and data

¢ Envelope contains tag, communicator, length,
source information, plus impl. private data

Short

¢ Message data (message for short) sent with
envelope

Eager
¢ Message sent assuming destination can store

Rendezvous
¢ Message not sent until destination oks

5 PARALLEL@ILLINOIS

MPI on Distributed Shared
Memory Systems

Message passing is a good way to use
distributed shared memory (DSM) machines
because it provides a way to express memory
locality.

Put

¢ Sender puts to destination memory (user or MPI
buffer). Like Eager.

Get

¢ Receiver gets data from sender or MPI buffer. Like
Rendezvous.

Short, long, rendezvous versions of these

6 PARALLEL@ILLINOIS

Message Protocol Details

Eager not Rsend, rendezvous not Ssend
resp., but related

User versus system buffer space
Packetization
Collective operations

Datatypes, particularly non-contiguous

¢ Handling of important special cases

e Constant stride
e Contiguous structures

; PARALLEL@ILLINOIS

Eager Protocol

Process 0

Process 1

Y

Time

e Data delivered to process 1

¢ No matching receive may exist; process 1
must then buffer and copy.

g PARALLEL@ILLINOIS

Eager Features

1867

e Reduces synchronization delays

e Simplifies programming (just
MPI_Send)

e Requires significant buffering

e May require active involvement of
CPU to drain network at receiver’s
end

e May introduce additional copy
(buffer to final destination)
5 PARALLEL@ILLINOIS

How Scalable is Eager Delivery?

Buffering must be reserved for arbitrary
senders

User-model mismatch (often expect buffering
allocated entirely to “used” connections).

Common approach in implementations is to
provide same buffering for all members of
MPI_COMM_WORLD; this is optimizing for
non-scaleable computations

Scalable implementations that exploit message
patterns are possible (but not widely
implemented)

10 PARALLEL@ILLINOIS

Rendezvous Protocol

May | Send?
Process 0 - ﬁ ‘
Process 1 Yes

Time >

e Envelope delivered first

e Data delivered when user-buffer available
][¢ Only buffering of envelopes required

1 PARALLEL@ILLINOIS

Rendezvous Features

e Robust and safe

¢ (except for limit on the number of
envelopes...)

e May remove copy (user to user
direct)

e More complex programming
(waits/tests)

e May introduce synchronization
delays (waiting for receiver to ok

| send)

—_
x —
()
~

12 PARALLEL@ILLINOIS

Short Protocol

e Data is part of the envelope
e Otherwise like eager protocol

e May be performance optimization
in interconnection system for short
messages, particularly for
networks that send fixed-length
packets (or cache lines)

13 PARALLEL@ILLINOIS

User and System Buffering

e Where is data stored (or staged)
while being sent?

¢ User’' s memory

e Allocated on the fly
e Preallocated

¢ System memory
e May be limited
e Special memory may be faster

14 PARALLEL@ILLINOIS

Implementing MPI_Isend

e Simplest implementation is to always
use rendezvous protocol:

¢ MPI_Isend delivers a request-to-send
control message to receiver

¢ Receiving process responds with an ok-to-
send

e May or may not have matching MPI receive; only
needs buffer space to store incoming message

¢ Sending process transfers data

e Wait for MPI_Isend request
¢ wait for ok-to-send message from receiver

¢ wait for data transfer to be complete on
sending side

I

1867

5 PARALLEL@ILLINOIS

Alternatives for MPI Isend

e Use a short protocol for small messages
¢ No need to exchange control messages

¢ Need guaranteed (but small) buffer space
on destination for short message envelope

¢ Wait becomes a no-op

e Use eager protocol for modest sized
messages

¢ Still need guaranteed buffer space for both
message envelope and eager data on
destination

][¢ Avoids exchange of control messages

6 PARALLEL@ILLINOIS

Implementing MPI_Send

e Can’ t use eager always because this
could overwhelm the receiving process

if (rank != 0) MPI Send(100 MB of data)
else receive 100 MB from each process

e Would like to exploit the blocking nature
(can wait for receive)

e Would like to be fast

e Select protocol based on message size
(and perhaps available buffer space at
destination)

¢ Short and/or eager for small messages
][¢ Rendezvous for longer messages

" PARALLEL@ILLINOIS

Implementing MPI_Rsend

e Just use MPI_Send; no advantage
for users

e Use eager always (or short if
small)

¢ even for long messages

18 PARALLEL@ILLINOIS

Choosing MPI Send Modes

e No perfect choice. However:

¢ Eager is faster than rendezvous until
e Data is unexpected: 2*latency is smaller
than the time to copy from buffer
¢ Ready can force Eager, but requires
prepost of receive

e Best when data is long but not too long
(measured in terms of s/r)
¢ Synchronous good when MPI
implementation has inadequate flow

1 control and messages are large
19 PARALLEL@ILLINOIS

Latency and Bandwidth

e Simplest model s + rn

e s includes both hardware (gate delays)
and software (context switch, setup)

e rincludes both hardware (raw
bandwidth of interconnection and
memory system) and software
(packetization, copies between user and
system)

e Head-to-head and pingpong values may
T differ

20 PARALLEL@ILLINOIS

Interpreting Latency and

Bandwidth

I

1867

e Bandwidth is the inverse of the slope of the line
time = latency + (1/rate) size_of_message

e For performance estimation purposes, latency is
the limit(n—=0) of the time to send n bytes

e Latency is sometimes described as “time to send
a message of zero bytes”. This is true only for
the simple model. The number quoted is
sometimes misleading.

Time

to Send
Message

Not latency

e

J Latency

Messags Size

1/slope=Bandwidth

PARALLEL@ILLINOIS

Try It Yourself: Timing MPI
Operations

e Estimate the latency and bandwidth for
some MPI operation (e.g., Send/Recy,
Bcast, Ssend/Irecv-Wait)

¢ Make sure all processes are ready before
starting the test

¢ How repeatable are your measurements?

¢ How does the performance compare to the
performance of other operations (e.qg.,
memcpy, floating multiply)?

» PARALLEL@ILLINOIS

Packetization

e Some networks send data in discrete
chunks called packets

Process 0 I

- Last Packet may be shorter

Data sent in individual packets

Process 1

Introduces a ceil(n/packet_size) term

Staircase appearance of performance graph

Packetization, syncronization,
and contention

y PARALLEL@ILLINOIS

Example of Packetization

Comm Perf for MPI (IBM SP2 .
type = blockj(ng) Packets contain 232
I T

HO 71— R L B bytes of data. (first is
- T 200 bytes, so MPI header
100 - is probably 32 bytes).
80 —]
— BO —
% | Data from mpptest,
J: available at
= B ftp://ftp.mcs.anl.gov/
i pub/mpi/misc/
80 — perftest.tar.gz
50 —
4_0 1 I | I | I | I | I 1
0 200 400 800 800 1000 1200

Size (bytes)

24 PARALLEL@ILLINOIS

