Lecture 27: Halo Exchange
and Contention

William Gropp
www.cs.illinois.edu/~wgropp

Unexpected Hot Spots

e Even simple operations can give
surprising performance behavior.

e Examples arise even in common
grid exchange patterns

e Message passing illustrates
problems present even in shared
memory

¢ Blocking operations may cause
unavoidable stalls

> PARALLEL@ILLINOIS

Mesh Exchange

e Exchange data on a mesh

PARALLEL@ILLINOIS

Sample Code

e Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL, &
nbr(i), tag,comm, ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Recv(edge(1,i), len, MPI_REAL, &
nbr(i), tag, comm, status, ierr)
Enddo

4 PARALLEL@ILLINOIS

Deadlocks!

1867

o All of the sends may block, waiting for a
matching receive (will for large enough
messages)

e The variation of

if (has down nbr) then

Call MPI_Send(... down ...)
endif
if (has up nbr) then

Call MPI_Recv(... up ...)
endif

ééquentializes (all except the bottom process
blocks)

; PARALLEL@ILLINOIS

Sequentialization

1867

Start
Send

Send

Start
Send

Send

Recv

Start
Send

Send

Recv

Start
Send

Send

Recv

Start
Send

Send

Recv

Start
Send
Send

Recv

Send

Recv

Recv

PARALLEL@ILLINOIS

Fix 1: Use Irecv

e Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, ierr)
Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

e Does not perform well in practice. Why?

, PARALLEL@ILLINOIS

Understanding the Behavior:
Timing Model

e Sends interleave

e Sends block (data larger than
buffering will allow)

e Sends control timing

e Receives do not interfere with
Sends

e Exchange can be done in 4 steps
(down, right, up, left)

g PARALLEL@ILLINOIS

Mesh Exchange - Step 1

1867

e Exchange data on a mesh

5 PARALLEL@ILLINOIS

Mesh Exchange - Step 2

1867

e Exchange data on a mesh

PARALLEL@ILLINOIS

Mesh Exchange - Step 3

e Exchange data on a mesh

PARALLEL@ILLINOIS

Mesh Exchange - Step 4

e Exchange data on a mesh

PARALLEL@ILLINOIS

Mesh Exchange - Step 5

e Exchange data on a mesh

PARALLEL@ILLINOIS

Mesh Exchange - Step 6

e Exchange data on a mesh

14

PARALLEL@ILLINOIS

Timeline from IBM SP

ogllle Title: Me

-!ARRIEH -Ihlt'i.' :t!kb :HAITAL[
. ||. .|_

0.01 %3 0.01v0 0.017S 0.0120 0.01m3 o.o0130 0.013% 0.02400 0.0205 o.0210 0.0215

e Note that process 1 finishes last, as
T predicted

s PARALLEL@ILLINOIS

Distribution of Sends

‘SEND’' state length distribution

poo2 o0.0003 0.0004 O0.0005 O0.0006 O.0007 O0.0008 O0.00D%

(in seconds)
68 states of 86 (70%)

6 PARALLEL@ILLINOIS

Why Six Steps?

e Ordering of Sends introduces
delays when there is contention at
the receiver

e Takes roughly twice as long as it
should

e Bandwidth is being wasted

e Same thing would happen if using
memcpy and shared memory

17 PARALLEL@ILLINOIS

Fix 2: Use Isend and Irecv

1867

Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i),len,MPI_REAL,nbr(i),tag,&
comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(n_neighbors+i), ierr)
Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)

18 PARALLEL@ILLINOIS

Mesh Exchange - Steps 1-4

e Four interleaved steps

PARALLEL@ILLINOIS

Timeline from IBM SP

Legfile Title: Ms

-BAHHIEH ‘:]IHECU -ISEHD |:|w.uuu

| 1 — R —-

K

il

0.3555 0.3560 0.3565 0.3570 03575 03580 0.3585 03590 0.3595 0.3600 0.35605

Note processes 5 and 6 are the only interior
processors; these perform more communication

j than the other processors

20 PARALLEL@ILLINOIS

Lesson: Defer
Synchronization

Send-receive accomplishes two things:
¢ Data transfer
¢ Synchronization

In many cases, there is more
synchronization than required

Use nonblocking operations and
MPI_Waitall to defer synchronization

Effect still common; recently observed
on Blue Waters

21 PARALLEL@ILLINOIS

More Flexibility

e MPI_Waitall forces the process (strictly thread)
to wait until all requests have completed

e At the cost ot extra code complexity, can use

¢ MPI_Waitany - return when any one of the requests
complete

¢ MPI_Waitsome - return all complete request once at
least one is complete

e Now available data can be processed while the
rest arrives

¢ Works best when there is asynchronous progress by
the MPI implementation

1867

' 2 PARALLEL@ILLINOIS

