
Lecture 27: Halo Exchange
and Contention

William Gropp
www.cs.illinois.edu/~wgropp

2

Unexpected Hot Spots

• Even simple operations can give
surprising performance behavior.

• Examples arise even in common
grid exchange patterns

• Message passing illustrates
problems present even in shared
memory
♦ Blocking operations may cause

unavoidable stalls

3

Mesh Exchange

• Exchange data on a mesh

4

Sample Code

•  Do i=1,n_neighbors
 Call MPI_Send(edge(1,i), len, MPI_REAL, &
 nbr(i), tag,comm, ierr)
Enddo
Do i=1,n_neighbors
 Call MPI_Recv(edge(1,i), len, MPI_REAL, &
 nbr(i), tag, comm, status, ierr)
Enddo

5

Deadlocks!

•  All of the sends may block, waiting for a
matching receive (will for large enough
messages)

•  The variation of
if (has down nbr) then
 Call MPI_Send(… down …)
endif
if (has up nbr) then
 Call MPI_Recv(… up …)
endif
…
sequentializes (all except the bottom process
blocks)

6

Sequentialization

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

7

Fix 1: Use Irecv

•  Do i=1,n_neighbors
 Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&
 comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors
 Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
 comm, ierr)
Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

•  Does not perform well in practice. Why?

8

Understanding the Behavior:
Timing Model

• Sends interleave
• Sends block (data larger than

buffering will allow)
• Sends control timing
• Receives do not interfere with

Sends
• Exchange can be done in 4 steps

(down, right, up, left)

9

Mesh Exchange - Step 1

• Exchange data on a mesh

10

Mesh Exchange - Step 2

• Exchange data on a mesh

11

Mesh Exchange - Step 3

• Exchange data on a mesh

12

Mesh Exchange - Step 4

• Exchange data on a mesh

13

Mesh Exchange - Step 5

• Exchange data on a mesh

14

Mesh Exchange - Step 6

• Exchange data on a mesh

15

Timeline from IBM SP

•  Note that process 1 finishes last, as
predicted

16

Distribution of Sends

17

Why Six Steps?

• Ordering of Sends introduces
delays when there is contention at
the receiver

• Takes roughly twice as long as it
should

• Bandwidth is being wasted
• Same thing would happen if using

memcpy and shared memory

18

Fix 2: Use Isend and Irecv

•  Do i=1,n_neighbors
 Call MPI_Irecv(inedge(1,i),len,MPI_REAL,nbr(i),tag,&
 comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors
 Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,&
 comm, requests(n_neighbors+i), ierr)
Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)

19

Mesh Exchange - Steps 1-4

• Four interleaved steps

20

Timeline from IBM SP

Note processes 5 and 6 are the only interior
processors; these perform more communication
than the other processors

21

Lesson: Defer
Synchronization

•  Send-receive accomplishes two things:
♦ Data transfer
♦ Synchronization

•  In many cases, there is more
synchronization than required

•  Use nonblocking operations and
MPI_Waitall to defer synchronization

•  Effect still common; recently observed
on Blue Waters

22

More Flexibility

•  MPI_Waitall forces the process (strictly thread)
to wait until all requests have completed

•  At the cost ot extra code complexity, can use
♦  MPI_Waitany – return when any one of the requests

complete
♦  MPI_Waitsome – return all complete request once at

least one is complete
•  Now available data can be processed while the

rest arrives
♦  Works best when there is asynchronous progress by

the MPI implementation

