Lecture 28: Process Topology
and MPI

William Gropp
www.cs.illinois.edu/~wgropp

Virtual and Physical
Topologies

e A virtual topology represents the
way that MPI processes
communicate
¢ Nearest neighbor exchange in a mesh
¢ Recursive doubling in an all-to-all

exchange

e A physical topology represents that
connections between the cores,
chips, and nodes in the hardware

!

> PARALLEL@ILLINOIS

Virtual and Physical
Topologies

e Issue is mapping of the virtual topology onto
the physical topology

¢ Hierarchical systems (e.g., nodes of chips of cores)
makes this more complicated; no simple topology

e Questions to ask
¢ Does it really matter what mapping is used?
¢ How does one get a good mapping?
¢ How bad can a bad mapping be?
¢ What if the mapping is random?

e This lecture is about using MPI to work with
virtual topologies and make it possible for the
MPI implementation to provide a good
I§ mapping

1867

3 PARALLEL@ILLINOIS

MPI’'s Topology Routines

e MPI provides routines to create new
communicators that order the process ranks in
a way that may be a better match for the
physical topology

e Two types of virtual topology supported:
¢ Cartesian (regular mesh)
¢ Graph (several ways to define in MPI)

e Additional routines provide access to the
defined virtual topology

e (Virtual) topologies are properties of a
communicator

][¢ Topology routines all create a new communicator
with properties of the specified virtual topology
4 PARALLEL@ILLINOIS

MPI Cartesian Topology

e Create a new virtual topology
using
¢ MPI_Cart_create

e Determine “good” sizes of mesh
with
¢ MPI_Dims_create

; PARALLEL@ILLINOIS

MPI Cart create

e MPI_Cart_create(MPI_Comm oldcomm,
int ndim, int dims[], int gperiodic[],
int greorder,

MPI_Comm *newcomm)

¢ Creates a new communicator newcomm
from oldcomm, that represents an ndim
dimensional mesh with sizes dims. The
mesh is periodic in coordinate direction i if
qperiodic[i] is true. The ranks in the new
communicator are reordered (to better
match the physical topology) if qreorder is

][true
6 PARALLEL@ILLINOIS

MPI Dims create

e MPI_Dims_create(int nnodes,
int ndim, int dims|[])

e Fill in the dims array such that the
product of dims[i] for i=0 to
ndim-1 equals nnodes.

e Any value of dimsJi] that is O on
input will be replaced; values that
are > 0 will not be changed

; PARALLEL@ILLINOIS

MPI Cart_create Example

e int periods[3] ={1,1,1};
int dims[3] = {0,0,0}, wsize;
MPI_Comm cartcomm;

MPI_Comm_size(MPI_COMM_WORLD, &wsize);

MPI_Dims_create(wsize, 3, dims);

MPI_Cart_create(MPI_COMM_WORLD, 3, dims,
periods, 1, &cartcomm);

e Creates a new communicator cartcomm that
may be efficiently mapped to the physical
topology

g PARALLEL@ILLINOIS

Information About a
Cartesian Topology

e MPI_Cartdim_get
¢ Dimension of Cartesian mesh (ndim)
e MPI_Cart_get

¢ Size of dimensions (dims), periodic
dimensions (qperiodic), coordinates
of calling process in mesh

5 PARALLEL@ILLINOIS

Determine Neighbor Ranks

e Can be computed from rank (in the
cartcomm), dims, and periods,
since ordering defined in MPI

¢ See Section 7.5 in MPI-3 Standard

e Fasier to use either
¢ MPI_Cart_coords, MPI_Cart_rank
¢ MPI_ Cart_shift

10 PARALLEL@ILLINOIS

MPI Cart shift

e MPI_Cart_shift(MPI_Comm comm,
int direction, int disp,
int *rank_source, int *rank_dest)

e Returns the ranks of the processes that
are a shift of disp steps in coordinate
direction

o Useful for nearest neighbor
communication in the coordinate
directions

¢ Use MPI_Cart_coords, MPI_Cart_rank for
][more general patterns
= 11 PARALLEL@|LLINOIS

MPI Graph Topology

—
x —
()
~

e MPI provides routines to specify a
general graph virtual topology

¢ Graph vertices represent MPI
processes (usually one per process)

¢ Graph edges indicate important
connections (e.g., nontrivial
communication between the
connected processes)

¢ Edge weights provide more
information (e.g., amount of

communication) PARALLEL@ILLINOIS

MPI_Dist_graph_create_adjacent

e MPI_Dist_graph_create_adjacent(MPI_Comm oldcomm,
int indegree, int sources|], int sourceweights|[],
int outdegree, int dests[], int destweights][],
MPI_Info info, int greorder,
MPI_Comm *newcomm)

e Describe only the graph vertex corresponding to the

calling process
¢ Hence "Dist_graph” - distributed description of graph

e Graph is directed - separate in and out edges

e info allows additional, implementation-specific
information

o qreorder if true lets MPI implementation reorder ranks
for a better mapping to physical topology

][e MPI_UNWEIGHTED may be used for weights arrays

. PARALLEL@ILLINOIS

Other Graph Routines

e MPI_Dist_graph_create

¢ More general, allows multiple graph
vertices per process

e Information on graph

¢ MPI_Dist_graph_neighbors_count,
MPI_Dist_graph_neighbors

14 PARALLEL@ILLINOIS

Some Results
(Good and Bad)

e A common virtual topology is nearest
neighbor in a mesh
¢ Matrix computations
¢ PDE Simulations on regular computational

grids

e Many Large Scale Systems use a mesh as
the physical topology
¢ IBM Blue Gene series; Cray through XE6/XK7

e Performance can depend on how well the
virtual topology is mapped onto the

@ physical topology
s PARALLEL@ILLINOIS

Why Mesh Networks?

1867

e Pros:
¢ Scaling cost of adding a node is constant

¢ Nearest neighbor bandwidth proportional to
the number of nodes (thus scales perfectly as
well)

¢ Cabling relatively simple

e Cons:

¢ Bisection bandwidth does not scale with
network size

e For 3D mesh, scales as n?/n3 = n4/3 for nxnxn mesh

¢ Non-nearest neighbor communication suffers

from contention
6 PARALLEL@ILLINOIS

Mesh Performance Limits

e What is the maximum aggregate
bandwidth of an n X n X n mesh,
assuming:

¢ Each interior node sends at bandwidth L to
each of its 6 neighbors (£x,*y,*z direction)

¢ Edge nodes send to their immediate
neighbors

e What is the bisection bandwidth of this
network (simple cut along any
coordinate plane)?

I

17 PARALLEL@ILLINOIS

Mesh Performance

e Aggregate bandwidth

¢ Simple, overestimate: n3 nodes * 6 links/node * L
bytes/sec/link = 6Ln3 bytes/sec

¢ More accurate
e 6L(N-2)3 + 6(n-2)25L + 12(n-2)4L + 8(1)3L
e i.e., Interior + 6 faces + 12 edges + 8 corners
e Bisection Bandwidth
¢ LNn?

e Note: Nearest neighbor bandwidth is more
than n times bisection bandwidth

e For n=24, L = 2GB/sec
¢ Neighbor = L*79488 = 159 TB/sec
][¢ Bisection = L*576 = 1.2TB/sec
8 PARALLEL@]LLINOIS

Communication Cost Includes More
than Latency and Bandwidth

Communication does not
happen in isolation

Effective bandwidth on
shared link is %2 point-to-
point bandwidth

Real patterns can involve
many more (integer
factors)

Loosely synchronous
algorithms ensure
communication cost is
worst case

5 PARALLEL@ILLINOIS

Halo Exchange on BG/Q and

Cray XE6

1867

« 2048 doubles to each neighbor
« Rate is MB/sec (for all tables)

BG/Q 8 Neighbors

Irecv/Send Irecv/Isend
World 662 1167
Even/Odd 711 1452
1 sender 2873
Cray XE6 8 Neighbors

Irecv/Send Irecv/Isend
World 352 348
Even/Odd 338 324
1 sender 5507

20

PARALLEL@ILLINOIS

Discovering Performance
Opportunities

e Lets look at a single process sending to its neighbors.

e Based on our performance model, we expect the rate
to be roughly twice that for the halo (since this test
is only sending, not sending and receiving)

1867

System 4 neighbors 8 Neighbors

Periodic Periodic
BG/L 488 490 389 389
BG/P 1139 1136 892 892
BG/Q 2873
XT3 1005 1007 1053 1045
XT4 1634 1620 1773 1770
XE6 5507

21 PARALLEL

LLINOIS

Opportunities

Discovering Performance

e Ratios of a single sender to all processes sending (in rate)
e Expect a factor of roughly 2 (since processes must also

receive)
System 4 neighbors 8 Neighbors
Periodic Periodic
BG/L 2.24 2.01
BG/P 3.8 2.2
BG/Q 1.98
XT3 7.5 8.1 9.08 9.41
XT4 10.7 10.7 13.0 13.7
XE6 15.6 15.9

BG gives roughly double the halo rate. XTn and XE6 are much higher.

= Or improving the MPI implementation

22

= It should be possible to improve the halo exchange on the XT by scheduling
the communication

PARALLEL@ILLINOIS

Limitations of MPI Process
Topology Routines: Cartesian

e DimsS_create

¢ Only for MPI_COMM_WORLD; if
strictly implemented, nearly useless

¢ Standard defines exact output, makes
this a convenience routine for
computing factors of an integer. This
was the wrong definition

e Cart routines

¢ Can be implemented, but can be
I nontrivial in non-mesh network

23 PARALLEL@ILLINOIS

Limitations of MPI Process
Topology Routines: Graph

e Graph routines

¢ Complex to implement. No good
implementations in general use; research
work limited

e E.g., minimize “bandwidth” in the numerical
sparse matrix sense of the connection graph.
Does not minimize contention

e One-level

¢ Doesn’t address cores/chips, though cart/
graph_map could

y PARALLEL@ILLINOIS

MPI's Original Graph
Routines

e MPI-1 and MPI-2 contained a different
set of Graph topology routines

¢ These required each process to provide the
entire graph

¢ Simplifies determination of virtual to
physical topology mapping

¢ Sensible when maximum number of
processes was < 200 (when MPI-1 created)

¢ These routines are MPI_Graph_xxx
¢ Do not use these in new codes

25 PARALLEL@ILLINOIS

Nonstandard Interfaces

e Many systems provide ways to
¢ Control mapping of processes
¢ Access the mapping

e Mapping on Job Startup
¢ Sometimes called allocation mapping

¢ Typically specified by environment
variable or command line option

2% PARALLEL@ILLINOIS

Example: Blue Waters
Allocation Mapping

—
=3 |I=i
N
~

e Environment variable
¢ MPICH RANK REORDER METHOD

¢ Values:
e 0 = Round robin by node

e 1 = Fill each node with processes before going to
next node ("SMP ordering”)

e 2 = Folded by node (0,1,2,...,9,9,9-1,...,0)
e 3 = Read from file named MPICH_RANK_ORDER
e Mapping to cores within node controlled

by —cc and —d options to aprun

e https://bluewaters.ncsa.illinois.edu/

topology-considerations
27 PARALLEL@ILLINOIS

Example Blue Gene/Q
Allocation Mapping

e Option to runjob:
¢ --mapping ABCDET

¢ where order of letters indicates which
torus coordinate (A-E) or process on
node (T) increments (starting from
the right)

¢ Mapping with a file also possible

e http://www.redbooks.ibm.com/
redbooks/pdfs/sg247948.pdf

28 PARALLEL@ILLINOIS

Mapping at Runtime

e Also known as Rank Reordering

e Create a new communicator that gives
each MPI process a new rank to achieve
a "better” mapping from virtual to
physical topology
¢ This is what the MPI Topology routines do

e Requires access to the physical topology

¢ No standard method, but many systems
provide an API

¢ Clusters may provide hwloc
http://www.open-mpi.org/projects/hwloc/

29 PARALLEL@ILLINOIS

Access to Mesh Topology

1867

e Simple routines available for Blue
Waters (Cray systems with Gemini
interconnect) and IBM Blue Gene/

Q

e Provides access to physical mesh
coordinates as well as chip, core
number within node

e Example of scalable access to
regular network

30 PARALLEL@ILLINOIS

Access to Mesh Topology

#include <stdio.h>

#include <string.h>

#include "mpi.h”

#include "topoinfo.h”

int main(int argc, char **argv)

{

topoinfo_t *topoinfo;

int wrank, verbose=0;

char leader[10];

MPI_Init(&argc,&argv);

if (argv[1l] && strcmp(argv[1],"-v") == 0) verbose = 1;
MPI_Comm_rank(MPI_COMM_WORLD,&wrank);
snprintf(leader,sizeof(leader),"%d:",wrank);
topolnit(verbose,&topoinfo);
topoPrint(stdout,leader,topoinfo);
topoFinalize(&topoinfo);

MPI_Finalize();

return O;

31 PARALLEL@ILLINOIS

Impact of Other Jobs

1867

Even with a perfect
mapping, programs can
suffer from interference
with other jobs

Can be reduced by
topology-aware scheduling

Layout of I/O nodes,
adaptive routing can create
contention even with
topology-aware scheduling

In this example, either the
blue job or the pink job can
communicate without
contention, but together
they share all of the “x”
links in the pink job

32

f—ii——

:
i
.

PARALLEL@

LLINOIs

Readings

e Generic Topology Mapping Strategies for
Large-scale Parallel Architectures, Hoefler and
Snir
http://dx.doi.org/10.1145/1995896.1995909

e Implementing the MPI Process Topology
Mechanism, Traeff
http://www.computer.org/csdl/proceedings/
sc/2002/1524/00/15240028-abs.html

e Avoiding Hot Spots on Two-Level Direct
Networks, Bhatele, Jain, Gropp, Kale
http://dl.acm.org/citation.cfm?
doid=2063384.2063486

33 PARALLEL@ILLINOIS

