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Virtual and Physical 
Topologies 

• A virtual topology represents the 
way that MPI processes 
communicate 
♦ Nearest neighbor exchange in a mesh 
♦ Recursive doubling in an all-to-all 

exchange 
• A physical topology represents that 

connections between the cores, 
chips, and nodes in the hardware 
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Virtual and Physical 
Topologies 

•  Issue is mapping of the virtual topology onto 
the physical topology 
♦  Hierarchical systems (e.g., nodes of chips of cores) 

makes this more complicated; no simple topology 
•  Questions to ask 

♦  Does it really matter what mapping is used? 
♦  How does one get a good mapping? 
♦  How bad can a bad mapping be? 
♦  What if the mapping is random? 

•  This lecture is about using MPI to work with 
virtual topologies and make it possible for the 
MPI implementation to provide a good 
mapping  
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MPI’s Topology Routines 

•  MPI provides routines to create new 
communicators that order the process ranks in 
a way that may be a better match for the 
physical topology 

•  Two types of virtual topology supported: 
♦  Cartesian (regular mesh) 
♦  Graph (several ways to define in MPI) 

•  Additional routines provide access to the 
defined virtual topology 

•  (Virtual) topologies are properties of a 
communicator 
♦  Topology routines all create a new communicator 

with properties of the specified virtual topology 
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MPI Cartesian Topology 

• Create a new virtual topology 
using 
♦ MPI_Cart_create 

• Determine “good” sizes of mesh 
with 
♦ MPI_Dims_create 
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MPI_Cart_create 

•  MPI_Cart_create(MPI_Comm oldcomm, 
 int ndim, int dims[], int qperiodic[], 
 int qreorder, 
 MPI_Comm *newcomm) 

♦ Creates a new communicator newcomm 
from oldcomm, that represents an ndim 
dimensional mesh with sizes dims.  The 
mesh is periodic in coordinate direction i if 
qperiodic[i] is true.  The ranks in the new 
communicator are reordered (to better 
match the physical topology) if qreorder is 
true 
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MPI_Dims_create 

• MPI_Dims_create(int nnodes, 
 int ndim, int dims[]) 

• Fill in the dims array such that the 
product of dims[i] for i=0 to 
ndim-1 equals nnodes. 

• Any value of dims[i] that is 0 on 
input will be replaced; values that 
are > 0 will not be changed 
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MPI_Cart_create Example 

•  int periods[3] = {1,1,1}; 
int dims[3] = {0,0,0}, wsize; 
MPI_Comm cartcomm; 
 
MPI_Comm_size(MPI_COMM_WORLD, &wsize); 
MPI_Dims_create(wsize, 3, dims); 
MPI_Cart_create(MPI_COMM_WORLD, 3, dims, 

      periods, 1, &cartcomm); 
 

•  Creates a new communicator cartcomm that 
may be efficiently mapped to the physical 
topology 
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Information About a 
Cartesian Topology 

• MPI_Cartdim_get 
♦ Dimension of Cartesian mesh (ndim) 

• MPI_Cart_get 
♦ Size of dimensions (dims), periodic 

dimensions (qperiodic), coordinates 
of calling process in mesh 
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Determine Neighbor Ranks 

• Can be computed from rank (in the 
cartcomm), dims, and periods, 
since ordering defined in MPI 
♦ See Section 7.5 in MPI-3 Standard 

• Easier to use either 
♦ MPI_Cart_coords, MPI_Cart_rank 
♦ MPI_Cart_shift 



11 

MPI_Cart_shift 

•  MPI_Cart_shift(MPI_Comm comm, 
 int direction, int disp, 
 int *rank_source, int *rank_dest) 

•  Returns the ranks of the processes that 
are a shift of disp steps in coordinate 
direction 

•  Useful for nearest neighbor 
communication in the coordinate 
directions 
♦ Use MPI_Cart_coords, MPI_Cart_rank for 

more general patterns 
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MPI Graph Topology 

• MPI provides routines to specify a 
general graph virtual topology 
♦ Graph vertices represent MPI 

processes (usually one per process) 
♦ Graph edges indicate important 

connections (e.g., nontrivial 
communication between the 
connected processes) 

♦ Edge weights provide more 
information (e.g., amount of 
communication) 
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MPI_Dist_graph_create_adjacent 

•  MPI_Dist_graph_create_adjacent(MPI_Comm oldcomm, 
 int indegree, int sources[], int sourceweights[], 
 int outdegree, int dests[], int destweights[], 
 MPI_Info info, int qreorder, 
 MPI_Comm *newcomm) 

•  Describe only the graph vertex corresponding to the 
calling process 
♦  Hence “Dist_graph” – distributed description of graph 

•  Graph is directed – separate in and out edges 
•  info allows additional, implementation-specific 

information 
•  qreorder if true lets MPI implementation reorder ranks 

for a better mapping to physical topology 
•  MPI_UNWEIGHTED may be used for weights arrays 
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Other Graph Routines 

• MPI_Dist_graph_create 
♦ More general, allows multiple graph 

vertices per process 
•  Information on graph 

♦ MPI_Dist_graph_neighbors_count, 
MPI_Dist_graph_neighbors 
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Some Results 
(Good and Bad) 

•  A common virtual topology is nearest 
neighbor in a mesh 
♦ Matrix computations 
♦ PDE Simulations on regular computational 

grids 
•  Many Large Scale Systems use a mesh as 

the physical topology 
♦  IBM Blue Gene series; Cray through XE6/XK7 

•  Performance can depend on how well the 
virtual topology is mapped onto the 
physical topology 
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Why Mesh Networks? 

•  Pros: 
♦ Scaling cost of adding a node is constant 
♦ Nearest neighbor bandwidth proportional to 

the number of nodes (thus scales perfectly as 
well) 

♦ Cabling relatively simple 
•  Cons: 

♦ Bisection bandwidth does not scale with 
network size 
•  For 3D mesh, scales as n2/n3 = n2/3 for nxnxn mesh 

♦ Non-nearest neighbor communication suffers 
from contention 
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Mesh Performance Limits 

•  What is the maximum aggregate 
bandwidth of an n x n x n mesh, 
assuming: 
♦ Each interior node sends at bandwidth L to 

each of its 6 neighbors (±x,±y,±z direction) 
♦ Edge nodes send to their immediate 

neighbors 
•  What is the bisection bandwidth of this 

network (simple cut along any 
coordinate plane)? 
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Mesh Performance 

•  Aggregate bandwidth 
♦  Simple, overestimate: n3 nodes * 6 links/node * L 

bytes/sec/link = 6Ln3 bytes/sec 
♦  More accurate 

•  6L(n-2)3 + 6(n-2)25L + 12(n-2)4L + 8(1)3L 
•  i.e., Interior + 6 faces + 12 edges + 8 corners 

•  Bisection Bandwidth 
♦  Ln2 

•  Note: Nearest neighbor bandwidth is more 
than n times bisection bandwidth 

•  For n=24, L = 2GB/sec 
♦  Neighbor = L*79488 = 159 TB/sec 
♦  Bisection = L*576 = 1.2TB/sec 
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Communication Cost Includes More 
than Latency and Bandwidth 

•  Communication does not 
happen in isolation 

•  Effective bandwidth on 
shared link is ½ point-to-
point bandwidth 

•  Real patterns can involve 
many more (integer 
factors) 

•  Loosely synchronous 
algorithms ensure 
communication cost is 
worst case 

19 
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Halo Exchange on BG/Q and 
Cray XE6 

BG/Q 8 Neighbors 
Irecv/Send Irecv/Isend 

World 662 1167 
Even/Odd 711 1452 
1 sender 2873 

•  2048 doubles to each neighbor 
•  Rate is MB/sec (for all tables) 

Cray XE6 8 Neighbors 
Irecv/Send Irecv/Isend 

World 352 348 
Even/Odd 338 324 
1 sender 5507 
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Discovering Performance 
Opportunities 

•  Lets look at a single process sending to its neighbors.   
•  Based on our performance model, we expect the rate 

to be roughly twice that for the halo (since this test 
is only sending, not sending and receiving) 

System 4 neighbors 8 Neighbors 

Periodic Periodic 

BG/L 488 490 389 389 

BG/P 1139 1136 892 892 

BG/Q 2873 

XT3 1005 1007 1053 1045 

XT4 1634 1620 1773 1770 
XE6 5507 
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Discovering Performance 
Opportunities 

•  Ratios of a single sender to all processes sending (in rate) 
•  Expect a factor of roughly 2 (since processes must also 

receive) 
System 4 neighbors 8 Neighbors 

Periodic Periodic 

BG/L 2.24 2.01 

BG/P 3.8 2.2 

BG/Q 1.98 

XT3 7.5 8.1 9.08 9.41 

XT4 10.7 10.7 13.0 13.7 
XE6 15.6 15.9 

§  BG gives roughly double the halo rate.  XTn and XE6 are much higher. 
§  It should be possible to improve the halo exchange on the XT by scheduling 

the communication 
§  Or improving the MPI implementation 
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Limitations of MPI Process 
Topology Routines: Cartesian 
• Dims_create 

♦ Only for MPI_COMM_WORLD; if 
strictly implemented, nearly useless 

♦ Standard defines exact output, makes 
this a convenience routine for 
computing factors of an integer.  This 
was the wrong definition 

• Cart routines 
♦ Can be implemented, but can be 

nontrivial in non-mesh network 
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Limitations of MPI Process 
Topology Routines: Graph 

•  Graph routines 
♦ Complex to implement.  No good 

implementations in general use; research 
work limited 
•  E.g., minimize “bandwidth” in the numerical 

sparse matrix sense of the connection graph.  
Does not minimize contention 

•  One-level 
♦ Doesn’t address cores/chips, though cart/

graph_map could 
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MPI’s Original Graph 
Routines 

•  MPI-1 and MPI-2 contained a different 
set of Graph topology routines 
♦ These required each process to provide the 

entire graph 
♦ Simplifies determination of virtual to 

physical topology mapping 
♦ Sensible when maximum number of 

processes was < 200 (when MPI-1 created) 
♦ These routines are MPI_Graph_xxx 
♦ Do not use these in new codes 
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Nonstandard Interfaces 

• Many systems provide ways to 
♦ Control mapping of processes 
♦ Access the mapping 

• Mapping on Job Startup 
♦ Sometimes called allocation mapping 
♦ Typically specified by environment 

variable or command line option 
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Example: Blue Waters 
Allocation Mapping 

•  Environment variable 
♦ MPICH_RANK_REORDER_METHOD 
♦ Values: 

•  0 = Round robin by node 
•  1 = Fill each node with processes before going to 

next node (“SMP ordering”) 
•  2 = Folded by node (0,1,2,…,q,q,q-1,…,0) 
•  3 = Read from file named MPICH_RANK_ORDER 

•  Mapping to cores within node controlled 
by –cc and –d options to aprun 

•  https://bluewaters.ncsa.illinois.edu/
topology-considerations  
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Example Blue Gene/Q 
Allocation Mapping 

• Option to runjob: 
♦ --mapping ABCDET 
♦ where order of letters indicates which 

torus coordinate (A-E) or process on 
node (T) increments (starting from 
the right) 

♦ Mapping with a file also possible 
• http://www.redbooks.ibm.com/

redbooks/pdfs/sg247948.pdf  
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Mapping at Runtime 

•  Also known as Rank Reordering 
•  Create a new communicator that gives 

each MPI process a new rank to achieve 
a “better” mapping from virtual to 
physical topology 
♦ This is what the MPI Topology routines do 

•  Requires access to the physical topology 
♦ No standard method, but many systems 

provide an API 
♦ Clusters may provide hwloc 

http://www.open-mpi.org/projects/hwloc/  
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Access to Mesh Topology 

• Simple routines available for Blue 
Waters (Cray systems with Gemini 
interconnect) and IBM Blue Gene/
Q 

• Provides access to physical mesh 
coordinates as well as chip, core 
number within node 

• Example of scalable access to 
regular network   
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Access to Mesh Topology 

#include <stdio.h> 
#include <string.h> 
#include "mpi.h” 
#include "topoinfo.h” 
int main(int argc, char **argv) 
{ 
topoinfo_t *topoinfo; 
int  wrank, verbose=0; 
char leader[10]; 
MPI_Init(&argc,&argv); 
if (argv[1] && strcmp(argv[1],"-v") == 0) verbose = 1; 
MPI_Comm_rank(MPI_COMM_WORLD,&wrank); 
snprintf(leader,sizeof(leader),"%d:",wrank); 
topoInit(verbose,&topoinfo); 
topoPrint(stdout,leader,topoinfo); 
topoFinalize(&topoinfo); 
MPI_Finalize(); 
return 0; 
} 
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Impact of Other Jobs 

•  Even with a perfect 
mapping, programs can 
suffer from interference 
with other jobs 

•  Can be reduced by 
topology-aware scheduling 

•  Layout of I/O nodes, 
adaptive routing can create 
contention even with 
topology-aware scheduling 

•  In this example, either the 
blue job or the pink job can 
communicate without 
contention, but together 
they share all of the “x” 
links in the pink job 



33 

Readings 

•  Generic Topology Mapping Strategies for 
Large-scale Parallel Architectures, Hoefler and 
Snir 
http://dx.doi.org/10.1145/1995896.1995909  

•  Implementing the MPI Process Topology 
Mechanism, Traeff 
http://www.computer.org/csdl/proceedings/
sc/2002/1524/00/15240028-abs.html   

•  Avoiding Hot Spots on Two-Level Direct 
Networks, Bhatele, Jain, Gropp, Kale 
http://dl.acm.org/citation.cfm?
doid=2063384.2063486  


