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Virtual and Physical
Topologies

e A virtual topology represents the
way that MPI processes
communicate
¢ Nearest neighbor exchange in a mesh
¢ Recursive doubling in an all-to-all

exchange

e A physical topology represents that
connections between the cores,
chips, and nodes in the hardware

!
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Virtual and Physical
Topologies

e Issue is mapping of the virtual topology onto
the physical topology

¢ Hierarchical systems (e.g., nodes of chips of cores)
makes this more complicated; no simple topology

e Questions to ask
¢ Does it really matter what mapping is used?
¢ How does one get a good mapping?
¢ How bad can a bad mapping be?
¢ What if the mapping is random?

e This lecture is about using MPI to work with
virtual topologies and make it possible for the
MPI implementation to provide a good
I§  mapping
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MPI’'s Topology Routines

e MPI provides routines to create new
communicators that order the process ranks in
a way that may be a better match for the
physical topology

e Two types of virtual topology supported:
¢ Cartesian (regular mesh)
¢ Graph (several ways to define in MPI)

e Additional routines provide access to the
defined virtual topology

e (Virtual) topologies are properties of a
communicator

][ ¢ Topology routines all create a new communicator
with properties of the specified virtual topology
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MPI Cartesian Topology

e Create a new virtual topology
using
¢ MPI_Cart_create

e Determine “good” sizes of mesh
with
¢ MPI_Dims_create
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MPI Cart create

e MPI_Cart_create(MPI_Comm oldcomm,
int ndim, int dims[], int gperiodic[],
int greorder,

MPI_Comm *newcomm)

¢ Creates a new communicator newcomm
from oldcomm, that represents an ndim
dimensional mesh with sizes dims. The
mesh is periodic in coordinate direction i if
qperiodic[i] is true. The ranks in the new
communicator are reordered (to better
match the physical topology) if qreorder is

][ true
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MPI Dims create

e MPI_Dims_create(int nnodes,
int ndim, int dims|[])

e Fill in the dims array such that the
product of dims[i] for i=0 to
ndim-1 equals nnodes.

e Any value of dimsJi] that is O on
input will be replaced; values that
are > 0 will not be changed
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MPI Cart_create Example

e int periods[3] ={1,1,1};
int dims[3] = {0,0,0}, wsize;
MPI_Comm cartcomm;

MPI_Comm_size(MPI_COMM_WORLD, &wsize);

MPI_Dims_create(wsize, 3, dims);

MPI_Cart_create(MPI_COMM_WORLD, 3, dims,
periods, 1, &cartcomm);

e Creates a new communicator cartcomm that
may be efficiently mapped to the physical
topology
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Information About a
Cartesian Topology

e MPI_Cartdim_get
¢ Dimension of Cartesian mesh (ndim)
e MPI_Cart_get

¢ Size of dimensions (dims), periodic
dimensions (qperiodic), coordinates
of calling process in mesh
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Determine Neighbor Ranks

e Can be computed from rank (in the
cartcomm), dims, and periods,
since ordering defined in MPI

¢ See Section 7.5 in MPI-3 Standard

e Fasier to use either
¢ MPI_Cart_coords, MPI_Cart_rank
¢ MPI_ Cart_shift
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MPI Cart shift

e MPI_Cart_shift(MPI_Comm comm,
int direction, int disp,
int *rank_source, int *rank_dest)

e Returns the ranks of the processes that
are a shift of disp steps in coordinate
direction

o Useful for nearest neighbor
communication in the coordinate
directions

¢ Use MPI_Cart_coords, MPI_Cart_rank for
][ more general patterns
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MPI Graph Topology
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e MPI provides routines to specify a
general graph virtual topology

¢ Graph vertices represent MPI
processes (usually one per process)

¢ Graph edges indicate important
connections (e.g., nontrivial
communication between the
connected processes)

¢ Edge weights provide more
information (e.g., amount of
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MPI_Dist_graph_create_adjacent

e MPI_Dist_graph_create_adjacent(MPI_Comm oldcomm,
int indegree, int sources|], int sourceweights|[],
int outdegree, int dests[], int destweights][],
MPI_Info info, int greorder,
MPI_Comm *newcomm)

e Describe only the graph vertex corresponding to the

calling process
¢ Hence "Dist_graph” - distributed description of graph

e Graph is directed - separate in and out edges

e info allows additional, implementation-specific
information

o qreorder if true lets MPI implementation reorder ranks
for a better mapping to physical topology

][ e MPI_UNWEIGHTED may be used for weights arrays
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Other Graph Routines

e MPI_Dist_graph_create

¢ More general, allows multiple graph
vertices per process

e Information on graph

¢ MPI_Dist_graph_neighbors_count,
MPI_Dist_graph_neighbors
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Some Results
(Good and Bad)

e A common virtual topology is nearest
neighbor in a mesh
¢ Matrix computations
¢ PDE Simulations on regular computational

grids

e Many Large Scale Systems use a mesh as
the physical topology
¢ IBM Blue Gene series; Cray through XE6/XK7

e Performance can depend on how well the
virtual topology is mapped onto the

@ physical topology
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Why Mesh Networks?
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e Pros:
¢ Scaling cost of adding a node is constant

¢ Nearest neighbor bandwidth proportional to
the number of nodes (thus scales perfectly as
well)

¢ Cabling relatively simple

e Cons:

¢ Bisection bandwidth does not scale with
network size

e For 3D mesh, scales as n?/n3 = n4/3 for nxnxn mesh

¢ Non-nearest neighbor communication suffers

from contention
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Mesh Performance Limits

e What is the maximum aggregate
bandwidth of an n X n X n mesh,
assuming:

¢ Each interior node sends at bandwidth L to
each of its 6 neighbors (£x,*y,*z direction)

¢ Edge nodes send to their immediate
neighbors

e What is the bisection bandwidth of this
network (simple cut along any
coordinate plane)?

I
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Mesh Performance

e Aggregate bandwidth

¢ Simple, overestimate: n3 nodes * 6 links/node * L
bytes/sec/link = 6Ln3 bytes/sec

¢ More accurate
e 6L(N-2)3 + 6(n-2)25L + 12(n-2)4L + 8(1)3L
e i.e., Interior + 6 faces + 12 edges + 8 corners
e Bisection Bandwidth
¢ LNn?

e Note: Nearest neighbor bandwidth is more
than n times bisection bandwidth

e For n=24, L = 2GB/sec
¢ Neighbor = L*79488 = 159 TB/sec
][ ¢ Bisection = L*576 = 1.2TB/sec
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Communication Cost Includes More
than Latency and Bandwidth

Communication does not
happen in isolation

Effective bandwidth on
shared link is %2 point-to-
point bandwidth

Real patterns can involve
many more (integer
factors)

Loosely synchronous
algorithms ensure
communication cost is
worst case
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Halo Exchange on BG/Q and

Cray XE6
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« 2048 doubles to each neighbor
« Rate is MB/sec (for all tables)

BG/Q 8 Neighbors

Irecv/Send Irecv/Isend
World 662 1167
Even/Odd 711 1452
1 sender 2873
Cray XE6 8 Neighbors

Irecv/Send Irecv/Isend
World 352 348
Even/Odd 338 324
1 sender 5507
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Discovering Performance
Opportunities

e Lets look at a single process sending to its neighbors.

e Based on our performance model, we expect the rate
to be roughly twice that for the halo (since this test
is only sending, not sending and receiving)

1867

System 4 neighbors 8 Neighbors

Periodic Periodic
BG/L 488 490 389 389
BG/P 1139 1136 892 892
BG/Q 2873
XT3 1005 1007 1053 1045
XT4 1634 1620 1773 1770
XE6 5507
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Opportunities

Discovering Performance

e Ratios of a single sender to all processes sending (in rate)
e Expect a factor of roughly 2 (since processes must also

receive)
System 4 neighbors 8 Neighbors
Periodic Periodic
BG/L 2.24 2.01
BG/P 3.8 2.2
BG/Q 1.98
XT3 7.5 8.1 9.08 9.41
XT4 10.7 10.7 13.0 13.7
XE6 15.6 15.9

BG gives roughly double the halo rate. XTn and XE6 are much higher.

= Or improving the MPI implementation
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= It should be possible to improve the halo exchange on the XT by scheduling
the communication
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Limitations of MPI Process
Topology Routines: Cartesian

e DimsS_create

¢ Only for MPI_COMM_WORLD; if
strictly implemented, nearly useless

¢ Standard defines exact output, makes
this a convenience routine for
computing factors of an integer. This
was the wrong definition

e Cart routines

¢ Can be implemented, but can be
I nontrivial in non-mesh network
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Limitations of MPI Process
Topology Routines: Graph

e Graph routines

¢ Complex to implement. No good
implementations in general use; research
work limited

e E.g., minimize “bandwidth” in the numerical
sparse matrix sense of the connection graph.
Does not minimize contention

e One-level

¢ Doesn’t address cores/chips, though cart/
graph_map could
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MPI's Original Graph
Routines

e MPI-1 and MPI-2 contained a different
set of Graph topology routines

¢ These required each process to provide the
entire graph

¢ Simplifies determination of virtual to
physical topology mapping

¢ Sensible when maximum number of
processes was < 200 (when MPI-1 created)

¢ These routines are MPI_Graph_xxx
¢ Do not use these in new codes
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Nonstandard Interfaces

e Many systems provide ways to
¢ Control mapping of processes
¢ Access the mapping

e Mapping on Job Startup
¢ Sometimes called allocation mapping

¢ Typically specified by environment
variable or command line option
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Example: Blue Waters
Allocation Mapping

—
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e Environment variable
¢ MPICH RANK REORDER METHOD

¢ Values:
e 0 = Round robin by node

e 1 = Fill each node with processes before going to
next node ("SMP ordering”)

e 2 = Folded by node (0,1,2,...,9,9,9-1,...,0)
e 3 = Read from file named MPICH_RANK_ORDER
e Mapping to cores within node controlled

by —cc and —d options to aprun

e https://bluewaters.ncsa.illinois.edu/

topology-considerations
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Example Blue Gene/Q
Allocation Mapping

e Option to runjob:
¢ --mapping ABCDET

¢ where order of letters indicates which
torus coordinate (A-E) or process on
node (T) increments (starting from
the right)

¢ Mapping with a file also possible

e http://www.redbooks.ibm.com/
redbooks/pdfs/sg247948.pdf
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Mapping at Runtime

e Also known as Rank Reordering

e Create a new communicator that gives
each MPI process a new rank to achieve
a "better” mapping from virtual to
physical topology
¢ This is what the MPI Topology routines do

e Requires access to the physical topology

¢ No standard method, but many systems
provide an API

¢ Clusters may provide hwloc
http://www.open-mpi.org/projects/hwloc/

29 PARALLEL@ILLINOIS




Access to Mesh Topology
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e Simple routines available for Blue
Waters (Cray systems with Gemini
interconnect) and IBM Blue Gene/

Q

e Provides access to physical mesh
coordinates as well as chip, core
number within node

e Example of scalable access to
regular network
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Access to Mesh Topology

#include <stdio.h>

#include <string.h>

#include "mpi.h”

#include "topoinfo.h”

int main(int argc, char **argv)

{

topoinfo_t *topoinfo;

int wrank, verbose=0;

char leader[10];

MPI_Init(&argc,&argv);

if (argv[1l] && strcmp(argv[1],"-v") == 0) verbose = 1;
MPI_Comm_rank(MPI_COMM_WORLD,&wrank);
snprintf(leader,sizeof(leader),"%d:",wrank);
topolnit(verbose,&topoinfo);
topoPrint(stdout,leader,topoinfo);
topoFinalize(&topoinfo);

MPI_Finalize();

return O;
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Impact of Other Jobs
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Even with a perfect
mapping, programs can
suffer from interference
with other jobs

Can be reduced by
topology-aware scheduling

Layout of I/O nodes,
adaptive routing can create
contention even with
topology-aware scheduling

In this example, either the
blue job or the pink job can
communicate without
contention, but together
they share all of the “x”
links in the pink job
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Readings

e Generic Topology Mapping Strategies for
Large-scale Parallel Architectures, Hoefler and
Snir
http://dx.doi.org/10.1145/1995896.1995909

e Implementing the MPI Process Topology
Mechanism, Traeff
http://www.computer.org/csdl/proceedings/
sc/2002/1524/00/15240028-abs.html

e Avoiding Hot Spots on Two-Level Direct
Networks, Bhatele, Jain, Gropp, Kale
http://dl.acm.org/citation.cfm?
doid=2063384.2063486
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