
Lecture 28: Process Topology
and MPI

William Gropp
www.cs.illinois.edu/~wgropp

2

Virtual and Physical
Topologies

• A virtual topology represents the
way that MPI processes
communicate
♦ Nearest neighbor exchange in a mesh
♦ Recursive doubling in an all-to-all

exchange
• A physical topology represents that

connections between the cores,
chips, and nodes in the hardware

3

Virtual and Physical
Topologies

•  Issue is mapping of the virtual topology onto
the physical topology
♦  Hierarchical systems (e.g., nodes of chips of cores)

makes this more complicated; no simple topology
•  Questions to ask

♦  Does it really matter what mapping is used?
♦  How does one get a good mapping?
♦  How bad can a bad mapping be?
♦  What if the mapping is random?

•  This lecture is about using MPI to work with
virtual topologies and make it possible for the
MPI implementation to provide a good
mapping

4

MPI’s Topology Routines

•  MPI provides routines to create new
communicators that order the process ranks in
a way that may be a better match for the
physical topology

•  Two types of virtual topology supported:
♦  Cartesian (regular mesh)
♦  Graph (several ways to define in MPI)

•  Additional routines provide access to the
defined virtual topology

•  (Virtual) topologies are properties of a
communicator
♦  Topology routines all create a new communicator

with properties of the specified virtual topology

5

MPI Cartesian Topology

• Create a new virtual topology
using
♦ MPI_Cart_create

• Determine “good” sizes of mesh
with
♦ MPI_Dims_create

6

MPI_Cart_create

•  MPI_Cart_create(MPI_Comm oldcomm,
 int ndim, int dims[], int qperiodic[],
 int qreorder,
 MPI_Comm *newcomm)

♦ Creates a new communicator newcomm
from oldcomm, that represents an ndim
dimensional mesh with sizes dims. The
mesh is periodic in coordinate direction i if
qperiodic[i] is true. The ranks in the new
communicator are reordered (to better
match the physical topology) if qreorder is
true

7

MPI_Dims_create

• MPI_Dims_create(int nnodes,
 int ndim, int dims[])

• Fill in the dims array such that the
product of dims[i] for i=0 to
ndim-1 equals nnodes.

• Any value of dims[i] that is 0 on
input will be replaced; values that
are > 0 will not be changed

8

MPI_Cart_create Example

•  int periods[3] = {1,1,1};
int dims[3] = {0,0,0}, wsize;
MPI_Comm cartcomm;

MPI_Comm_size(MPI_COMM_WORLD, &wsize);
MPI_Dims_create(wsize, 3, dims);
MPI_Cart_create(MPI_COMM_WORLD, 3, dims,

 periods, 1, &cartcomm);

•  Creates a new communicator cartcomm that
may be efficiently mapped to the physical
topology

9

Information About a
Cartesian Topology

• MPI_Cartdim_get
♦ Dimension of Cartesian mesh (ndim)

• MPI_Cart_get
♦ Size of dimensions (dims), periodic

dimensions (qperiodic), coordinates
of calling process in mesh

10

Determine Neighbor Ranks

• Can be computed from rank (in the
cartcomm), dims, and periods,
since ordering defined in MPI
♦ See Section 7.5 in MPI-3 Standard

• Easier to use either
♦ MPI_Cart_coords, MPI_Cart_rank
♦ MPI_Cart_shift

11

MPI_Cart_shift

•  MPI_Cart_shift(MPI_Comm comm,
 int direction, int disp,
 int *rank_source, int *rank_dest)

•  Returns the ranks of the processes that
are a shift of disp steps in coordinate
direction

•  Useful for nearest neighbor
communication in the coordinate
directions
♦ Use MPI_Cart_coords, MPI_Cart_rank for

more general patterns

12

MPI Graph Topology

• MPI provides routines to specify a
general graph virtual topology
♦ Graph vertices represent MPI

processes (usually one per process)
♦ Graph edges indicate important

connections (e.g., nontrivial
communication between the
connected processes)

♦ Edge weights provide more
information (e.g., amount of
communication)

13

MPI_Dist_graph_create_adjacent

•  MPI_Dist_graph_create_adjacent(MPI_Comm oldcomm,
 int indegree, int sources[], int sourceweights[],
 int outdegree, int dests[], int destweights[],
 MPI_Info info, int qreorder,
 MPI_Comm *newcomm)

•  Describe only the graph vertex corresponding to the
calling process
♦  Hence “Dist_graph” – distributed description of graph

•  Graph is directed – separate in and out edges
•  info allows additional, implementation-specific

information
•  qreorder if true lets MPI implementation reorder ranks

for a better mapping to physical topology
•  MPI_UNWEIGHTED may be used for weights arrays

14

Other Graph Routines

• MPI_Dist_graph_create
♦ More general, allows multiple graph

vertices per process
•  Information on graph

♦ MPI_Dist_graph_neighbors_count,
MPI_Dist_graph_neighbors

15

Some Results
(Good and Bad)

•  A common virtual topology is nearest
neighbor in a mesh
♦ Matrix computations
♦ PDE Simulations on regular computational

grids
•  Many Large Scale Systems use a mesh as

the physical topology
♦  IBM Blue Gene series; Cray through XE6/XK7

•  Performance can depend on how well the
virtual topology is mapped onto the
physical topology

16

Why Mesh Networks?

•  Pros:
♦ Scaling cost of adding a node is constant
♦ Nearest neighbor bandwidth proportional to

the number of nodes (thus scales perfectly as
well)

♦ Cabling relatively simple
•  Cons:

♦ Bisection bandwidth does not scale with
network size
•  For 3D mesh, scales as n2/n3 = n2/3 for nxnxn mesh

♦ Non-nearest neighbor communication suffers
from contention

17

Mesh Performance Limits

•  What is the maximum aggregate
bandwidth of an n x n x n mesh,
assuming:
♦ Each interior node sends at bandwidth L to

each of its 6 neighbors (±x,±y,±z direction)
♦ Edge nodes send to their immediate

neighbors
•  What is the bisection bandwidth of this

network (simple cut along any
coordinate plane)?

18

Mesh Performance

•  Aggregate bandwidth
♦  Simple, overestimate: n3 nodes * 6 links/node * L

bytes/sec/link = 6Ln3 bytes/sec
♦  More accurate

•  6L(n-2)3 + 6(n-2)25L + 12(n-2)4L + 8(1)3L
•  i.e., Interior + 6 faces + 12 edges + 8 corners

•  Bisection Bandwidth
♦  Ln2

•  Note: Nearest neighbor bandwidth is more
than n times bisection bandwidth

•  For n=24, L = 2GB/sec
♦  Neighbor = L*79488 = 159 TB/sec
♦  Bisection = L*576 = 1.2TB/sec

19

Communication Cost Includes More
than Latency and Bandwidth

•  Communication does not
happen in isolation

•  Effective bandwidth on
shared link is ½ point-to-
point bandwidth

•  Real patterns can involve
many more (integer
factors)

•  Loosely synchronous
algorithms ensure
communication cost is
worst case

19

20

Halo Exchange on BG/Q and
Cray XE6

BG/Q 8 Neighbors
Irecv/Send Irecv/Isend

World 662 1167
Even/Odd 711 1452
1 sender 2873

•  2048 doubles to each neighbor
•  Rate is MB/sec (for all tables)

Cray XE6 8 Neighbors
Irecv/Send Irecv/Isend

World 352 348
Even/Odd 338 324
1 sender 5507

21

Discovering Performance
Opportunities

•  Lets look at a single process sending to its neighbors.
•  Based on our performance model, we expect the rate

to be roughly twice that for the halo (since this test
is only sending, not sending and receiving)

System 4 neighbors 8 Neighbors

Periodic Periodic

BG/L 488 490 389 389

BG/P 1139 1136 892 892

BG/Q 2873

XT3 1005 1007 1053 1045

XT4 1634 1620 1773 1770
XE6 5507

22

Discovering Performance
Opportunities

•  Ratios of a single sender to all processes sending (in rate)
•  Expect a factor of roughly 2 (since processes must also

receive)
System 4 neighbors 8 Neighbors

Periodic Periodic

BG/L 2.24 2.01

BG/P 3.8 2.2

BG/Q 1.98

XT3 7.5 8.1 9.08 9.41

XT4 10.7 10.7 13.0 13.7
XE6 15.6 15.9

§  BG gives roughly double the halo rate. XTn and XE6 are much higher.
§  It should be possible to improve the halo exchange on the XT by scheduling

the communication
§  Or improving the MPI implementation

23

Limitations of MPI Process
Topology Routines: Cartesian
• Dims_create

♦ Only for MPI_COMM_WORLD; if
strictly implemented, nearly useless

♦ Standard defines exact output, makes
this a convenience routine for
computing factors of an integer. This
was the wrong definition

• Cart routines
♦ Can be implemented, but can be

nontrivial in non-mesh network

24

Limitations of MPI Process
Topology Routines: Graph

•  Graph routines
♦ Complex to implement. No good

implementations in general use; research
work limited
•  E.g., minimize “bandwidth” in the numerical

sparse matrix sense of the connection graph.
Does not minimize contention

•  One-level
♦ Doesn’t address cores/chips, though cart/

graph_map could

25

MPI’s Original Graph
Routines

•  MPI-1 and MPI-2 contained a different
set of Graph topology routines
♦ These required each process to provide the

entire graph
♦ Simplifies determination of virtual to

physical topology mapping
♦ Sensible when maximum number of

processes was < 200 (when MPI-1 created)
♦ These routines are MPI_Graph_xxx
♦ Do not use these in new codes

26

Nonstandard Interfaces

• Many systems provide ways to
♦ Control mapping of processes
♦ Access the mapping

• Mapping on Job Startup
♦ Sometimes called allocation mapping
♦ Typically specified by environment

variable or command line option

27

Example: Blue Waters
Allocation Mapping

•  Environment variable
♦ MPICH_RANK_REORDER_METHOD
♦ Values:

•  0 = Round robin by node
•  1 = Fill each node with processes before going to

next node (“SMP ordering”)
•  2 = Folded by node (0,1,2,…,q,q,q-1,…,0)
•  3 = Read from file named MPICH_RANK_ORDER

•  Mapping to cores within node controlled
by –cc and –d options to aprun

•  https://bluewaters.ncsa.illinois.edu/
topology-considerations

28

Example Blue Gene/Q
Allocation Mapping

• Option to runjob:
♦ --mapping ABCDET
♦ where order of letters indicates which

torus coordinate (A-E) or process on
node (T) increments (starting from
the right)

♦ Mapping with a file also possible
• http://www.redbooks.ibm.com/

redbooks/pdfs/sg247948.pdf

29

Mapping at Runtime

•  Also known as Rank Reordering
•  Create a new communicator that gives

each MPI process a new rank to achieve
a “better” mapping from virtual to
physical topology
♦ This is what the MPI Topology routines do

•  Requires access to the physical topology
♦ No standard method, but many systems

provide an API
♦ Clusters may provide hwloc

http://www.open-mpi.org/projects/hwloc/

30

Access to Mesh Topology

• Simple routines available for Blue
Waters (Cray systems with Gemini
interconnect) and IBM Blue Gene/
Q

• Provides access to physical mesh
coordinates as well as chip, core
number within node

• Example of scalable access to
regular network

31

Access to Mesh Topology

#include <stdio.h>
#include <string.h>
#include "mpi.h”
#include "topoinfo.h”
int main(int argc, char **argv)
{
topoinfo_t *topoinfo;
int wrank, verbose=0;
char leader[10];
MPI_Init(&argc,&argv);
if (argv[1] && strcmp(argv[1],"-v") == 0) verbose = 1;
MPI_Comm_rank(MPI_COMM_WORLD,&wrank);
snprintf(leader,sizeof(leader),"%d:",wrank);
topoInit(verbose,&topoinfo);
topoPrint(stdout,leader,topoinfo);
topoFinalize(&topoinfo);
MPI_Finalize();
return 0;
}

32

Impact of Other Jobs

•  Even with a perfect
mapping, programs can
suffer from interference
with other jobs

•  Can be reduced by
topology-aware scheduling

•  Layout of I/O nodes,
adaptive routing can create
contention even with
topology-aware scheduling

•  In this example, either the
blue job or the pink job can
communicate without
contention, but together
they share all of the “x”
links in the pink job

33

Readings

•  Generic Topology Mapping Strategies for
Large-scale Parallel Architectures, Hoefler and
Snir
http://dx.doi.org/10.1145/1995896.1995909

•  Implementing the MPI Process Topology
Mechanism, Traeff
http://www.computer.org/csdl/proceedings/
sc/2002/1524/00/15240028-abs.html

•  Avoiding Hot Spots on Two-Level Direct
Networks, Bhatele, Jain, Gropp, Kale
http://dl.acm.org/citation.cfm?
doid=2063384.2063486

