
Lecture 29: Collective
Communication and
Computation in MPI

William Gropp
www.cs.illinois.edu/~wgropp

2

Collective Communication

•  All communication in MPI is within a
group of processes

•  Collective communication is over all of
the processes in that group

•  MPI_COMM_WORLD defines all of the
processes when the parallel job starts

•  Can define other subsets
♦ With MPI dynamic processes, can also

create sets bigger than MPI_COMM_WORLD
♦ Dynamic processes not supported on most

massively parallel systems

3

Collective Communication as
a Programming Model

• Programs using only collective
communication can be easier to
understand
♦ Every program does roughly the

same thing
♦ No “strange” communication patterns

• Algorithms for collective
communication are subtle, tricky
♦ Encourages use of communication

algorithms devised by experts

4

A Simple Example:
Computing pi

MPI_Bcast(&n, 1, MPI_INT, 0,
 MPI_COMM_WORLD);

h = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += f(x);
}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE,

 MPI_SUM, 0, MPI_COMM_WORLD);

5

Notes on Program

•  MPI_Bcast is a “one-to-all”
communication
♦ Sends value of “n” to all processes

•  MPI_Reduce is an “all-to-one”
computation, with an operation (sum,
represented as MPI_SUM) used to
combine (reduce) the data

•  Works with any number of processes,
even one.
♦ Avoids any specific communication pattern,

selection of ranks, process topology

6

MPI Collective
Communication

•  Communication and computation is
coordinated among a group of processes in a
communicator.

•  Groups and communicators can be constructed
“by hand” or using topology routines.

•  Non-blocking versions of collective operations
added in MPI-3

•  Three classes of operations: synchronization,
data movement, collective computation.

7

Synchronization

•  MPI_Barrier(comm)
•  Blocks until all processes in the group of the

communicator comm call it.
•  Almost never required in a parallel program

♦  Occasionally useful in measuring performance and
load balancing

♦  In unusual cases, can increase performance by
reducing network contention

♦  Does not guarantee that processes exit at the same
(or even close to the same) time

8

Collective Data Movement

•  One to all
♦ Broadcast
♦ Scatter (personalized)

•  All to one
♦ Gather

•  All to all
♦ Allgather
♦ Alltoall (personalized)

•  “Personalized” means each process gets
different data

9

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0
P1

P2

P3

P0
P1

P2

P3

10

Comments on Broadcast

•  All collective operations must be called by all
processes in the communicator

•  MPI_Bcast is called by both the sender (called
the root process) and the processes that are
to receive the broadcast
♦  MPI_Bcast is not a “multi-send”
♦  “root” argument is the rank of the sender; this tells

MPI which process originates the broadcast and
which receive

•  Example of orthogonallity of the MPI design:
MPI_Recv need not test for “multisend”

11

More Collective Data
Movement

A
B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0
P1

P2

P3

P0
P1

P2

P3

12

Notes on Collective
Communication

•  MPI_Allgather is equivalent to
♦ MPI_Gather followed by MPI_Bcast
♦ But algorithms for MPI_Allgather can be

faster
•  MPI_Alltoall performs a “transpose” of

the data
♦ Also called a personalized exchange
♦ Tricky to implement efficiently and in

general
•  For example, does not require O(p)

communication, especially when only a small
amount of data is sent to each process

13

Special Variants

•  The basic routines send the same amount of
data from each process
♦  E.g., MPI_Scatter(&v,1,MPI_INT,…) sends 1 int to each

process
•  What if you want to send a different number of

items to each process?
♦  Use MPI_Scatterv

•  The “v” (for vector) routines allow the
programmer to specify a different number of
elements for each destination (one to all
routines) or source (all to one routines).

•  Efficient algorithms exist for these cases, though
not as fast as the simpler, basic routines

14

Special Variants (Alltoall)

•  In one case (MPI_Alltoallw), there
are two “vector” routines, to allow
more general specification of MPI
datatypes for each source
♦ Recall that only the type signature

needs to match; this allows different
layouts in memory for each data
being sent

15

Collective Computation

•  Combines communication with
computation
♦ Reduce

•  All to one, with an operation to combine

♦ Scan, Exscan
•  All prior ranks to all, with combination

♦ Reduce_scatter
•  All to all, with combination

•  Combination operations either
♦ Predefined operations
♦ User defined operations

16

Collective Computation

P0
P1

P2

P3

P0
P1

P2

P3

A

B

D

C

A

B

D

C

Reduce

Scan

A+B+C+D

A+B+C+D
A+B+C
A+B
A

17

Collective Computation

P0
P1

P2

P3

P0
P1

P2

P3

A

B

D

C

A

B

D

C

Allreduce

Exscan

A+B+C+D

A+B+C
A+B
A

A+B+C+D

A+B+C+D
A+B+C+D

18

MPI Collective Routines:
Summary

•  Many Routines, including: Allgather, Allgatherv,
Allreduce, Alltoall, Alltoallv, Alltoallw,
Bcast, Exscan, Gather, Gatherv, Reduce,
Reduce_scatter, Scan, Scatter, Scatterv

•  All versions deliver results to all participating
processes.

•  V versions allow the hunks to have different sizes.
•  Allreduce, Exscan, Reduce, Reduce_scatter, and

Scan take both built-in and user-defined combiner
functions.

•  Most routines accept both intra- and inter-
communicators
♦  Intercommunicator versions are collective between two groups of

processes

19

MPI Built-in Collective
Computation Operations

•  MPI_MAX
•  MPI_MIN
•  MPI_PROD
•  MPI_SUM
•  MPI_LAND
•  MPI_LOR
•  MPI_LXOR
•  MPI_BAND
•  MPI_BOR
•  MPI_BXOR
•  MPI_MAXLOC
•  MPI_MINLOC

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Bitwise and
Bitwise or
Bitwise exclusive or
Maximum and location
Minimum and location

20

How Deterministic are
Collective Computations?

•  In exact arithmetic, you always get the same results
♦  but roundoff error, truncation can happen

•  MPI does not require that the same input give the same
output every time
♦  Implementations are encouraged but not required to

provide exactly the same output given the same input
♦  Round-off error may cause slight differences

•  Allreduce does guarantee that the same value is
received by all processes for each call

•  Why didn’t MPI mandate determinism?
♦  Not all applications need it
♦  Implementations of collective algorithms can use “deferred

synchronization” ideas to provide better performance

21

Defining your own Collective
Operations

•  Create your own collective computations
with:
MPI_Op_create(user_fcn, commutes, &op);
MPI_Op_free(&op);

user_fcn(invec, inoutvec, len, datatype);

•  The user function should perform:
inoutvec[i] = invec[i] op inoutvec[i];

for i from 0 to len-1.

•  The user function can be non-commutative.

22

Understanding the Definition
of User Operations

•  The declaration is
 void user_op(void *invec, void *inoutvec,
 int *len, MPI_Datatype *dtype)

♦  Why pointers to len, dtype?
•  An attempt to make the C and Fortran-77 versions

compatible (Fortran effectively passes most arguments
as pointers)

♦  Why a void return?
•  No error cases expected

•  Both assumptions turned out to be poor
choices

•  Why the “commutes” flag?
♦  Not all operations are commutative. Can you think

of one that is not?

23

An Example of a Non-
Commutative Operation

•  Matrix multiplication is not commutative
•  Consider using MPI_Scan to compute

the product of 3x3 matrices from each
process
♦ MPI implementation is free to use both

associativity and commutivity in the
algorithms unless the operation is marked
as non commutative

•  Try it yourself – write the operation and
try it using simple rotation matrices

24

Define the Groups

•  MPI_Comm_split(MPI_Comm oldcomm,
int color, int key, MPI_Comm *newcomm)
♦ Collective over input communicator
♦ Partitions based on “color”
♦ Orders rank in new communicator based on

key
♦ Usually the best routine for creating a new

communicator over a proper subset of
processes
• Don’t use MPI_Comm_create

♦ Can also be used to reorder ranks
• Question: How would you do that?

25

Define the Groups

•  MPI_Comm_create_group(
 MPI_Comm oldcomm,
 MPI_Group group, int tag,
 MPI_Comm *newcomm)

♦ New in MPI-3
•  Collective only over input group, not oldcomm

♦ Requires formation of group using MPI
group creation routines
• MPI_Comm_group to get an initial group
• MPI_Group_incl, MPI_Group_range_incl,

MPI_Group_union, etc.

26

Collective Communication
Semantics

•  Collective routines on the same
communicator must be called in the
same order on all participating
processes

•  If multi-threaded processes are used
(MPI_THREAD_MULTIPLE), it is the
users responsibility to ensure that the
collective routines follow the above rule

•  Message tags are not used
♦ Use different communicators if necessary to

separate collective operations on the same
process

27

NonBlocking Collective
Operations

•  MPI-3 introduced nonblocking versions
of collective operations
♦ All return an MPI_Request, use the usual

MPI_Wait, MPI_Test, etc. to complete.
♦ May be mixed with point-to-point and other

MPI_Requests
♦  Few implementations are fast or offer much

concurrency (as of 2015)
♦  Follow same ordering rules as blocking

operations
•  Even MPI_Ibarrier

♦ Useful for distributed termination detection

28

Neighborhood Collectives

•  Collective operation on an MPI communicator
with a defined topology
♦  For Cartesian (MPI_CART), immediate neighbors in

coordinate directions
•  Cooresponds to using MPI_Cart_shift with disp=1 in

each coordinate
♦  For Graph (MPI_DIST_GRAPH), immediate neighbors

(as returned by MPI_Dist_graph_neighbors)
•  MPI_Neighbor_alltoall

♦  Sends distinct messages to each neighbor
♦  Receives distinct messages from each neighbor

•  MPI_Ineighbor_alltoall for nonblocking version
•  Provides an alternative for halo exchanges

