
Lecture 29: Collective 
Communication and 
Computation in MPI 

William Gropp 
www.cs.illinois.edu/~wgropp 



2 

Collective Communication 

•  All communication in MPI is within a 
group of processes 

•  Collective communication is over all of 
the processes in that group 

•  MPI_COMM_WORLD defines all of the 
processes when the parallel job starts 

•  Can define other subsets 
♦ With MPI dynamic processes, can also 

create sets bigger than MPI_COMM_WORLD 
♦ Dynamic processes not supported on most 

massively parallel systems 
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Collective Communication as 
a Programming Model 

• Programs using only collective 
communication can be easier to 
understand 
♦ Every program does roughly the 

same thing 
♦ No “strange” communication patterns 

• Algorithms for collective 
communication are subtle, tricky 
♦ Encourages use of communication 

algorithms devised by experts 
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A Simple Example: 
Computing pi 

MPI_Bcast(&n, 1, MPI_INT, 0, 
  MPI_COMM_WORLD); 

h   = 1.0 / (double) n; 
sum = 0.0; 
for (i = myid + 1; i <= n; i += numprocs) { 
    x = h * ((double)i - 0.5); 
    sum += f(x); 
} 
mypi = h * sum; 
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, 

  MPI_SUM, 0, MPI_COMM_WORLD); 
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Notes on Program 

•  MPI_Bcast is a “one-to-all” 
communication 
♦ Sends value of “n” to all processes 

•  MPI_Reduce is an “all-to-one” 
computation, with an operation (sum, 
represented as MPI_SUM) used to 
combine (reduce) the data 

•  Works with any number of processes, 
even one. 
♦ Avoids any specific communication pattern, 

selection of ranks, process topology 
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MPI Collective 
Communication 

•  Communication and computation is 
coordinated among a group of processes in a 
communicator. 

•  Groups and communicators can be constructed 
“by hand” or using topology routines. 

•  Non-blocking versions of collective operations 
added in MPI-3 

•  Three classes of operations: synchronization, 
data movement, collective computation. 
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Synchronization 

•  MPI_Barrier( comm ) 
•  Blocks until all processes in the group of the 

communicator comm call it. 
•  Almost never required in a parallel program 

♦  Occasionally useful in measuring performance and 
load balancing 

♦  In unusual cases, can increase performance by 
reducing network contention 

♦  Does not guarantee that processes exit at the same 
(or even close to the same) time 
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Collective Data Movement 

•  One to all 
♦ Broadcast 
♦ Scatter (personalized) 

•  All to one 
♦ Gather 

•  All to all 
♦ Allgather 
♦ Alltoall (personalized) 

•  “Personalized” means each process gets 
different data 
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Comments on Broadcast 

•  All collective operations must be called by all 
processes in the communicator 

•  MPI_Bcast is called by both the sender (called 
the root process) and the processes that are 
to receive the broadcast 
♦  MPI_Bcast is not a “multi-send” 
♦  “root” argument is the rank of the sender; this tells 

MPI which process originates the broadcast and 
which receive 

•  Example of orthogonallity of the MPI design: 
MPI_Recv need not test for “multisend” 
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More Collective Data 
Movement 
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Notes on Collective 
Communication 

•  MPI_Allgather is equivalent to 
♦ MPI_Gather followed by MPI_Bcast 
♦ But algorithms for MPI_Allgather can be 

faster 
•  MPI_Alltoall performs a “transpose” of 

the data 
♦ Also called a personalized exchange 
♦ Tricky to implement efficiently and in 

general 
•  For example, does not require O(p) 

communication, especially when only a small 
amount of data is sent to each process 
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Special Variants 

•  The basic routines send the same amount of 
data from each process 
♦  E.g., MPI_Scatter(&v,1,MPI_INT,…) sends 1 int to each 

process 
•  What if you want to send a different number of 

items to each process? 
♦  Use MPI_Scatterv 

•  The “v” (for vector) routines allow the 
programmer to specify a different number of 
elements for each destination (one to all 
routines) or source (all to one routines). 

•  Efficient algorithms exist for these cases, though 
not as fast as the simpler, basic routines 
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Special Variants (Alltoall) 

•  In one case (MPI_Alltoallw), there 
are two “vector” routines, to allow 
more general specification of MPI 
datatypes for each source 
♦ Recall that only the type signature 

needs to match; this allows different 
layouts in memory for each data 
being sent 
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Collective Computation 

•  Combines communication with 
computation 
♦ Reduce 

•  All to one, with an operation to combine 

♦ Scan, Exscan 
•  All prior ranks to all, with combination 

♦ Reduce_scatter 
•  All to all, with combination 

•  Combination operations either 
♦ Predefined operations 
♦ User defined operations 
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Collective Computation 
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Collective Computation 
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MPI Collective Routines: 
Summary 

•  Many Routines, including:  Allgather, Allgatherv, 
Allreduce, Alltoall, Alltoallv, Alltoallw, 
Bcast, Exscan, Gather, Gatherv, Reduce, 
Reduce_scatter, Scan, Scatter, Scatterv 

•  All versions deliver results to all participating 
processes. 

•  V versions allow the hunks to have different sizes. 
•  Allreduce, Exscan, Reduce, Reduce_scatter, and 

Scan take both built-in and user-defined combiner 
functions. 

•  Most routines accept both intra- and inter-
communicators 
♦  Intercommunicator versions are collective between two groups of 

processes  
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MPI Built-in Collective 
Computation Operations 

•  MPI_MAX 
•  MPI_MIN 
•  MPI_PROD 
•  MPI_SUM 
•  MPI_LAND 
•  MPI_LOR 
•  MPI_LXOR 
•  MPI_BAND 
•  MPI_BOR 
•  MPI_BXOR 
•  MPI_MAXLOC 
•  MPI_MINLOC 

Maximum 
Minimum 
Product 
Sum 
Logical and 
Logical or 
Logical exclusive or 
Bitwise and 
Bitwise or 
Bitwise exclusive or 
Maximum and location 
Minimum and location 
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How Deterministic are 
Collective Computations? 

•  In exact arithmetic, you always get the same results 
♦  but roundoff error, truncation can happen 

•  MPI does not require that the same input give the same 
output every time 
♦  Implementations are encouraged but not required to 

provide exactly the same output given the same input 
♦  Round-off error may cause slight differences 

•  Allreduce does guarantee that the same value is 
received by all processes for each call 

•  Why didn’t MPI mandate determinism? 
♦  Not all applications need it 
♦  Implementations of collective algorithms can use “deferred 

synchronization” ideas to provide better performance 
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Defining your own Collective 
Operations 

•  Create your own collective computations 
with: 
MPI_Op_create( user_fcn, commutes, &op ); 
MPI_Op_free( &op ); 
 
user_fcn( invec, inoutvec, len, datatype ); 

•  The user function should perform: 
inoutvec[i]  =  invec[i]  op  inoutvec[i]; 
 
for i from 0 to len-1. 

•  The user function can be non-commutative. 
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Understanding the Definition 
of User Operations 

•  The declaration is 
 void user_op(void *invec, void *inoutvec, 
   int *len, MPI_Datatype *dtype) 

♦  Why pointers to len, dtype? 
•  An attempt to make the C and Fortran-77 versions 

compatible (Fortran effectively passes most arguments 
as pointers) 

♦  Why a void return? 
•  No error cases expected 

•  Both assumptions turned out to be poor 
choices 

•  Why the “commutes” flag? 
♦  Not all operations are commutative.  Can you think 

of one that is not? 
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An Example of a Non-
Commutative Operation 

•  Matrix multiplication is not commutative 
•  Consider using MPI_Scan to compute 

the product of 3x3 matrices from each 
process 
♦ MPI implementation is free to use both 

associativity and commutivity in the 
algorithms unless the operation is marked 
as non commutative 

•  Try it yourself – write the operation and 
try it using simple rotation matrices  
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Define the Groups 

•  MPI_Comm_split(MPI_Comm oldcomm, 
int color, int key, MPI_Comm *newcomm) 
♦ Collective over input communicator 
♦ Partitions based on “color” 
♦ Orders rank in new communicator based on 

key 
♦ Usually the best routine for creating a new 

communicator over a proper subset of 
processes 
• Don’t use MPI_Comm_create 

♦ Can also be used to reorder ranks 
• Question: How would you do that? 
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Define the Groups 

•  MPI_Comm_create_group( 
 MPI_Comm oldcomm,  
 MPI_Group group, int tag, 
 MPI_Comm *newcomm) 

♦ New in MPI-3 
•  Collective only over input group, not oldcomm 

♦ Requires formation of group using MPI 
group creation routines 
• MPI_Comm_group to get an initial group 
• MPI_Group_incl, MPI_Group_range_incl, 

MPI_Group_union, etc. 
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Collective Communication 
Semantics 

•  Collective routines on the same 
communicator must be called in the 
same order on all participating 
processes 

•  If multi-threaded processes are used 
(MPI_THREAD_MULTIPLE), it is the 
users responsibility to ensure that the 
collective routines follow the above rule  

•  Message tags are not used 
♦ Use different communicators if necessary to 

separate collective operations on the same 
process 
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NonBlocking Collective 
Operations 

•  MPI-3 introduced nonblocking versions 
of collective operations 
♦ All return an MPI_Request, use the usual 

MPI_Wait, MPI_Test, etc. to complete. 
♦ May be mixed with point-to-point and other 

MPI_Requests 
♦  Few implementations are fast or offer much 

concurrency (as of 2015) 
♦  Follow same ordering rules as blocking 

operations 
•  Even MPI_Ibarrier 

♦ Useful for distributed termination detection 
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Neighborhood Collectives 

•  Collective operation on an MPI communicator 
with a defined topology 
♦  For Cartesian (MPI_CART), immediate neighbors in 

coordinate directions 
•  Cooresponds to using MPI_Cart_shift with disp=1 in 

each coordinate 
♦  For Graph (MPI_DIST_GRAPH), immediate neighbors 

(as returned by MPI_Dist_graph_neighbors) 
•  MPI_Neighbor_alltoall 

♦  Sends distinct messages to each neighbor 
♦  Receives distinct messages from each neighbor 

•  MPI_Ineighbor_alltoall for nonblocking version 
•  Provides an alternative for halo exchanges 


