
Lecture 30: Considerations
When Using Collective

Operations
William Gropp

www.cs.illinois.edu/~wgropp

2

When not to use Collective
Operations

•  Sequences of collective communication can be
pipelined for better efficiency

•  Example: Process 0 reads data from a file and
broadcasts it to all other processes.
♦  do i=1,m

 if (rank .eq. 0) read *, a
 call mpi_bcast(a, n, MPI_INTEGER, 0, comm, ierr)
enddo

•  Question: How long will this take on p
processes?
♦  Assume a broadcast takes (s log p + r n) time, and

m=p
•  Yes, not (log p) * (s + rn); the best algorithm is not a

distribution tree

3

Broadcast of n Items p Times

•  If each takes (s logp + r n) and p
= m; then the entire loop takes
♦ s * p log p + p r n

• But there is a way to accomplish
this in s p + p r n time!
♦ Log p times as fast if n is small

4

Pipeline the Messages

•  Process 0 reads data from a file and sends it to
the next process. Others forward the data.
♦  do i=1,m

 if (rank .eq. 0) then
 read *, a
 call mpi_send(a, n, MPI_INTEGER, 1, 0, comm, ierr)
 else
 call mpi_recv(a, n, MPI_INTEGER, rank-1, 0, &
 comm, status, ierr)
 call mpi_send(a, n, MPI_INTEGER, next, 0, comm,&
 ierr)
 endif
enddo

•  next = rank+1 unless rank + 1 == size, in which
case use MPI_PROC_NULL

5

Concurrency Between Steps

•  Broadcast: •  Pipeline

Tim
e

Another example of deferring synchronization

Each broadcast takes
less time than pipeline
version, but total time
is longer

6

Notes on Pipelining Example

•  When reading and distributing data from a file,
use MPI_File_read_all instead
♦  Even more optimizations possible

•  Multiple disk reads
•  Pipeline the individual reads
•  Block transfers

•  This algorithm is sometimes called “digital
orrery”
♦  Circulate particles in n-body problem
♦  Even better performance if pipeline never stops

•  “Elegance” of collective routines can lead to
fine-grain synchronization
♦  And hence a performance penalty

7

Thinking about Broadcast

•  MPI_Bcast(buf, 100000, MPI_DOUBLE, …);
•  Use a tree-based distribution:

•  Use a pipeline: send the message in b byte
pieces. This allows each subtree to begin
communication after b bytes sent

•  Improves total performance:
♦  Root process takes same time (asymptotically)
♦  Other processes wait less

•  Time to reach leaf is b log p + (n-b), rather than n log p

•  Special hardware and other algorithms can be
used …

8

Make Full Use of the Network

•  Implement MPI_Bcast(buf,n,…) as
 MPI_Scatter(buf, n/p,…, buf+rank*n/p,…)
 MPI_Allgather(buf+rank*n/p, n/p,…,buf,…)

P0 P1 P3 P2 P4 P5 P6 P7

9

Optimal Algorithm Costs

•  Optimal cost is O(n) (O(p) terms don’t involve
n) since scatter moves n data, and allgather
also moves only n per process; these can use
pipelining to move data as well
♦  Scatter by recursive bisection uses log p steps to

move n(p-1)/p data
♦  Scatter by direct send uses p-1 steps to move

n(p-1)/p data
♦  Recursive doubling allgather uses log p steps to

move
•  N/p + 2n/p + 4n/p + … (p/2)/p = n(p-1)/p

♦  Bucket brigade allgather moves
•  N/p (p-1) times or (p-1)n/p

•  See, e.g., van de Geijn for more details

10

Implementation Variations

•  Implementations of collective
operations vary in goals and quality
♦ Short messages (minimize separate

communication steps)
♦  Long messages (pipelining, network

topology)
•  MPI’s general datatype rules make

some algorithms more difficult to
implement
♦ Datatypes can be different on different

processes; only the type signature must
match

11

Using Datatypes in Collective
Operations

• Datatypes allow noncontiguous
data to be moved (or computed
with)

• As for all MPI communications,
only the type signature (basic,
language defined types) must
match
♦ Layout in memory can differ on each

process

12

Example of Datatypes in
Collective Operations

•  Distribute a matrix from one process to
four
♦ Process 0 gets A(0:n/2,0:n/2),

Process 1 gets A(n/2+1:n,0:n/2),
Process 2 gets A(0:n/2,n/2+1:n),
Process 3 gets A(n/2+1:n,n/2+1:n)

•  Scatter (One to all, different data to
each)
♦ Data at source is not contiguous (n/2

numbers, separated by n/2 numbers)
♦ Use vector type to represent submatrix

13

Layout of Matrix in Memory

0

1

2

3

8

9

10

11

16

17

18

19

24

25

26

27

32

33

34

35

40

41

42

43

48

49

50

51

56

57

58

59

4

5

6

7

12

13

14

15

20

21

22

23

28

29

30

31

36

37

38

39

44

45

46

47

52

53

54

55

60

61

62

63

N = 8 example

P
rocess 0

P
rocess 1

P
rocess 2

P
rocess 3

14

Matrix Datatype

•  MPI_Type_vector(n/2 per block,
 n/2 blocks,
 dist from beginning of one block to next = n,
 MPI_DOUBLE_PRECISION,&subarray_type)

•  Can use this to send
♦  Do j=0,1

 Do i=0,1
 call MPI_Send(a(1+i*n/2, 1+j*n/2), 1,
 subarray_type, …)

♦  Note sending ONE type contain multiple basic elements
♦  Pass the (address of the) first element to be sent to

MPI_Send
♦  This looks like an MPI_Scatter, but with interleaved

data

15

Scatter with Datatypes

•  Scatter is like
♦  Do i=0,p-1

 call mpi_send(a(1+i*extent(datatype)),….)
•  “1+” is from 1-origin indexing in Fortran

♦  Extent is the distance from the beginning of the first
to the end of the last data element

♦  For our subarray_type, it is
 ((n/2-1)n+n/2) * extent(double)

♦  “extent(double)” is simply the number of bytes in
DOUBLE PRECISION item (often 8)

•  In Fortran, you can use
MPI_Type_size(MPI_DOUBLE_PRECISION, extent, ierr)

•  Or MPI_SIZEOF(a) (with the MPI or MPI_F08 module)
•  Or storage size(1.0do)/8 (in Fortran 2008)

 to get this value

16

If Only We Could Change the
Extent of subarray_type…

•  To make the communication work with
Scatterv, set Extent of each datatype to n/2
♦  Size of contiguous block all are built from

•  Use Scatterv (independent multiples of extent)
•  Location (beginning location) of blocks

♦  Process 0: 0 * 4 (doubles)
♦  Process 1: 1 * 4 (doubles)
♦  Process 2: 8 * 4 (doubles)
♦  Process 3: 9 * 4 (doubles)

•  How can we change the extent of a datatype?

17

Changing the Extent

•  MPI allows you to change the extent of
a datatype with
MPI_Type_create_resized

•  In our case (in C),
•  MPI_Type_create_resized(

 subarray_type, 0,
 (n/2)*sizeof(double), &newtype)

♦ Sets the lower bound to zero (almost
always the right thing) and the extent to n/
2 doubles.

18

Scattering A Matrix

•  sdisplace(1) = 0
sdisplace(2) = 1
sdisplace(3) = n
sdisplace(4) = n + 1
scounts(1,2,3,4)=1
call MPI_Scatterv(a, scounts, sdispls, newtype, &
 alocal, n*n/4, MPI_DOUBLE_PRECISION, &
 0, comm, ierr)
♦  Note that process 0 sends 1 item of newtype but all

processes receive n2/4 double precision elements
•  Test yourself: Work this out and convince

yourself that it is correct

19

Dense Matrix Vector Multiply

•  Let the matrix be partitioned across processes
by columns, and the vector by corresponding
rows.
♦  If process i has columns M:N of the matrix, it also

has elements M:N of the vectors
♦  Simple partition (process 0 has the first block of

columns, process 1 the second block, etc.)
♦  process i has columns col(i):col(i+1)-1

•  Problem: Compute the matrix-vector product
with the distributed data structures
♦  Send/receive requires intermediate buffers
♦  Collective solution

20

Using MPI_Reduce_scatter

•  Each process needs to accumulate a
contribution from every process to its part of
the result vector
do i=1,p
 recvcounts(i) = col(i+1)-col(i)
enddo
do j=1,n
 sum = 0
 do k=1, recvcounts(myrank)
 sum = sum + mv(j,k) * v(k)
 enddo
 localmv(j) = sum
enddo
call MPI_Reduce_scatter(localmv, my_vec, recvcounts, &
 MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierr)

Matrix times
vector

21

Meaning of Reduce Scatter

•  Reduce_scatter
♦  Scatters contributions from all processes to all others
♦  Combines (reduces) incoming contributions into a

single buffer
♦  MPI_Reduce_scatter_block like MPI_Reduce_scatter,

but with the same size block on all processes
•  Reduce_scatter also be used for distributed in-

memory checkpoint with error correction
♦  See SCR https://computation.llnl.gov/project/scr/
♦  Providing Efficient I/O Redundancy in MPI

Environments, Gropp, Ross, Miller, EuroPVM/MPI
2004,
http://link.springer.com/chapter/
10.1007/978-3-540-30218-6_17

22

Some Performance Issues

•  MPI Collectives must handle the general case
•  Implementations usually optimize for each collective

operation separately
♦  Assumption is make each individual collective as fast as

possible, not the overall application
♦  A Study of Process Arrival Patterns for MPI Collective

Operations, Faraj, Patarasuk, Yuan, IJ Parallel
Programming, 36:6 2008
http://link.springer.com/article/
10.1007%2Fs10766-008-0070-9

•  Implementations sensitive to progress
(availability of CPU to advance
communication)
♦  Particularly important for nonblocking collectives
♦  Nonblocking doesn’t ensure concurrent execution

