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When not to use Collective 
Operations 

•  Sequences of collective communication can be 
pipelined for better efficiency 

•  Example: Process 0 reads data from a file and 
broadcasts it to all other processes.   
♦  do i=1,m 

   if (rank .eq. 0) read *, a 
   call mpi_bcast(a, n, MPI_INTEGER, 0, comm, ierr) 
enddo 

•  Question: How long will this take on p 
processes? 
♦  Assume a broadcast takes (s log p + r n) time, and 

m=p 
•  Yes, not (log p) * (s + rn); the best algorithm is not a 

distribution tree 
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Broadcast of n Items p Times 

•  If each takes (s logp + r n) and p 
= m; then the entire loop takes 
♦ s * p log p + p r n 

• But there is a way to accomplish 
this in s p + p r n time! 
♦ Log p times as fast if n is small 
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Pipeline the Messages 

•  Process 0 reads data from a file and sends it to 
the next process.  Others forward the data.   
♦  do i=1,m 

   if (rank .eq. 0) then 
      read *, a 
      call mpi_send(a, n, MPI_INTEGER, 1, 0, comm, ierr) 
   else 
      call mpi_recv(a, n, MPI_INTEGER, rank-1, 0, & 
    comm, status,  ierr) 
      call mpi_send(a, n, MPI_INTEGER, next, 0, comm,& 
     ierr) 
   endif 
enddo 

•  next = rank+1 unless rank + 1 == size, in which 
case use MPI_PROC_NULL 
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Concurrency Between Steps  

•  Broadcast: •  Pipeline 

Tim
e 

Another example of deferring synchronization 

Each broadcast takes 
less time than pipeline 
version,  but total time 
is longer 
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Notes on Pipelining Example 

•  When reading and distributing data from a file, 
use MPI_File_read_all instead 
♦  Even more optimizations possible   

•  Multiple disk reads 
•  Pipeline the individual reads 
•  Block transfers 

•  This algorithm is sometimes called “digital 
orrery” 
♦  Circulate particles in n-body problem 
♦  Even better performance if pipeline never stops 

•  “Elegance” of collective routines can lead to 
fine-grain synchronization 
♦  And hence a performance penalty 
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Thinking about Broadcast  

•  MPI_Bcast( buf, 100000, MPI_DOUBLE, … ); 
•  Use a tree-based distribution: 

 
 
 

•  Use a pipeline: send the message in b byte 
pieces.  This allows each subtree to begin 
communication after b bytes sent  

•  Improves total performance: 
♦  Root process takes same time (asymptotically) 
♦  Other processes wait less 

•  Time to reach leaf is b log p + (n-b), rather than n log p 

•  Special hardware and other algorithms can be 
used … 
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Make Full Use of the Network 

•  Implement MPI_Bcast(buf,n,…) as 
   MPI_Scatter(buf, n/p,…, buf+rank*n/p,…) 
   MPI_Allgather(buf+rank*n/p, n/p,…,buf,…) 

P0 P1 P3 P2 P4 P5 P6 P7 
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Optimal Algorithm Costs 

•  Optimal cost is O(n) (O(p) terms don’t involve 
n) since scatter moves n data, and allgather 
also moves only n per process; these can use 
pipelining to move data as well 
♦  Scatter by recursive bisection uses log p steps to 

move n(p-1)/p data 
♦  Scatter by direct send uses p-1 steps to move 

n(p-1)/p data 
♦  Recursive doubling allgather uses log p steps to 

move 
•  N/p + 2n/p + 4n/p + … (p/2)/p = n(p-1)/p 

♦  Bucket brigade allgather moves 
•  N/p (p-1) times or (p-1)n/p  

•  See, e.g., van de Geijn for more details 
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Implementation Variations 

•  Implementations of collective 
operations vary in goals and quality 
♦ Short messages (minimize separate 

communication steps) 
♦  Long messages (pipelining, network 

topology) 
•  MPI’s general datatype rules make 

some algorithms more difficult to 
implement  
♦ Datatypes can be different on different 

processes; only the type signature must 
match 
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Using Datatypes in Collective 
Operations 

• Datatypes allow noncontiguous 
data to be moved (or computed 
with) 

• As for all MPI communications, 
only the type signature (basic, 
language defined types) must 
match 
♦ Layout in memory can differ on each 

process 
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Example of Datatypes in 
Collective Operations 

•  Distribute a matrix from one process to 
four 
♦ Process 0 gets A(0:n/2,0:n/2),  

Process 1 gets A(n/2+1:n,0:n/2),  
Process 2 gets A(0:n/2,n/2+1:n),  
Process 3 gets A(n/2+1:n,n/2+1:n) 

•  Scatter (One to all, different data to 
each) 
♦ Data at source is not contiguous (n/2 

numbers, separated by n/2 numbers) 
♦ Use vector type to represent submatrix 
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Layout of Matrix in Memory 
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Matrix Datatype 

•  MPI_Type_vector(n/2 per block,  
 n/2 blocks,  
 dist from beginning of one block to next = n,  
 MPI_DOUBLE_PRECISION,&subarray_type) 

•  Can use this to send 
♦  Do j=0,1 

    Do i=0,1 
     call MPI_Send( a(1+i*n/2, 1+j*n/2), 1, 
                                 subarray_type, … ) 

♦  Note sending ONE type contain multiple basic elements 
♦  Pass the (address of the) first element to be sent to 

MPI_Send 
♦  This looks like an MPI_Scatter, but with interleaved 

data 
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Scatter with Datatypes 

•  Scatter is like 
♦  Do i=0,p-1 

    call mpi_send(a(1+i*extent(datatype)),….) 
•  “1+” is from 1-origin indexing in Fortran 

♦  Extent is the distance from the beginning of the first 
to the end of the last data element 

♦  For our subarray_type, it is  
     ((n/2-1)n+n/2) * extent(double) 

♦  “extent(double)” is simply the number of bytes in 
DOUBLE PRECISION item (often 8) 

•  In Fortran, you can use 
MPI_Type_size( MPI_DOUBLE_PRECISION, extent, ierr) 

•  Or MPI_SIZEOF(a) (with the MPI or MPI_F08 module) 
•  Or storage size(1.0do)/8 (in Fortran 2008) 

  to get this value 
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If Only We Could Change the 
Extent of subarray_type… 

•  To make the communication work with 
Scatterv, set Extent of each datatype to n/2  
♦  Size of contiguous block all are built from 

•  Use Scatterv (independent multiples of extent) 
•  Location (beginning location) of blocks 

♦  Process 0: 0 * 4 (doubles) 
♦  Process 1: 1 * 4 (doubles) 
♦  Process 2: 8 * 4 (doubles) 
♦  Process 3: 9 * 4 (doubles) 

•  How can we change the extent of a datatype? 
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Changing the Extent 

•  MPI allows you to change the extent of 
a datatype with 
MPI_Type_create_resized 

•  In our case (in C), 
•  MPI_Type_create_resized( 

 subarray_type, 0, 
 (n/2)*sizeof(double), &newtype) 

♦ Sets the lower bound to zero (almost 
always the right thing) and the extent to n/
2 doubles. 
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Scattering A Matrix 

•  sdisplace(1) = 0 
sdisplace(2) = 1 
sdisplace(3) = n 
sdisplace(4) = n + 1 
scounts(1,2,3,4)=1 
call MPI_Scatterv(a, scounts, sdispls, newtype, & 
     alocal, n*n/4, MPI_DOUBLE_PRECISION, & 
     0, comm, ierr) 
♦  Note that process 0 sends 1 item of newtype but all 

processes receive n2/4 double precision elements 
•  Test yourself: Work this out and convince 

yourself that it is correct 
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Dense Matrix Vector Multiply 

•  Let the matrix be partitioned across processes 
by columns, and the vector by corresponding 
rows.   
♦  If process i has columns M:N of the matrix, it also 

has elements M:N of the vectors 
♦  Simple partition (process 0 has the first block of 

columns, process 1 the second block, etc.) 
♦  process i has columns col(i):col(i+1)-1 

•  Problem: Compute the matrix-vector product 
with the distributed data structures 
♦  Send/receive requires intermediate buffers 
♦  Collective solution 
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Using MPI_Reduce_scatter 

•  Each process needs to accumulate a 
contribution from every process to its part of 
the result vector 
do i=1,p 
    recvcounts(i) = col(i+1)-col(i) 
enddo 
do j=1,n 
   sum = 0 
   do k=1, recvcounts(myrank) 
        sum = sum + mv(j,k) * v(k) 
   enddo 
    localmv(j) = sum 
enddo 
call MPI_Reduce_scatter(localmv, my_vec, recvcounts, & 
                MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierr) 

Matrix times 
vector 



21 

Meaning of Reduce Scatter 

•  Reduce_scatter 
♦  Scatters contributions from all processes to all others 
♦  Combines (reduces) incoming contributions into a 

single buffer 
♦  MPI_Reduce_scatter_block like MPI_Reduce_scatter, 

but with the same size block on all processes 
•  Reduce_scatter also be used for distributed in-

memory checkpoint with error correction 
♦  See SCR https://computation.llnl.gov/project/scr/  
♦  Providing Efficient I/O Redundancy in MPI 

Environments, Gropp, Ross, Miller, EuroPVM/MPI 
2004, 
http://link.springer.com/chapter/
10.1007/978-3-540-30218-6_17  
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Some Performance Issues 

•  MPI Collectives must handle the general case 
•  Implementations usually optimize for each collective 

operation separately 
♦  Assumption is make each individual collective as fast as 

possible, not the overall application 
♦  A Study of Process Arrival Patterns for MPI Collective 

Operations, Faraj, Patarasuk, Yuan, IJ Parallel 
Programming, 36:6 2008 
http://link.springer.com/article/
10.1007%2Fs10766-008-0070-9  

•  Implementations sensitive to progress 
(availability of CPU to advance 
communication) 
♦  Particularly important for nonblocking collectives 
♦  Nonblocking doesn’t ensure concurrent execution 


