
Lecture 31: Introduction to 
Parallel I/O 

William Gropp 
www.cs.illinois.edu/~wgropp 



2 

I/O and File Systems 

•  Most applications need persistent 
storage 
♦ Typical to store persistent data in files, 

accessed through input/output (I/O) 
features of programming language and 
runtime 

♦ Dominant implementation for persistent 
storage is magnetic disks 
•  Tape also used for higher capacity 
•  Semiconductor and other technologies used for 

higher performance/lower power (e.g., FLASH) 



3 

Performance Parameters 

•  Magnetic disks performance 
♦  Latency 2-10 ms (time it take the disk to spin under 

the read/write head) 
•  1,000x slower than internode communication 
•  10,000,000x slower than processor core 

♦  Bandwidth over 100MB/sec 
•  But only approached for large transfers 

•  Performance sensitive to exact usage pattern 
•  Most I/O benchmarks are not representative of 

user I/O patterns 
♦  At most, useful to set a performance goal 

•  Most performance solutions aggregate 
operations in some way 



4 

Files and File Systems 

•  A file is just an ordered collection of 
bytes 

•  A file system manages collections of 
files and properties of the files 
♦ Size 
♦ Access restrictions 
♦ Quotas 
♦ Reading and writing data 

•  File systems differ in the services they 
provide and the semantics of data 
access and update 



5 

Two Abstract I/O Models 

•  Typical user view •  A more accurate 
model 

Write a(1:10) 

10 words 

Write a(1:10) 

Node Runtime 

Buffer 1Mblock 

1 MB 



6 

Notes on the Abstract I/O 
Models 

• Leaves out caching 
♦ Client (node) side can be hard (more 

later) 
• Leaves out metadata operations 

♦ Does user still have access to the file? 
♦ What is the date of the last access or 

change? 
♦ How big is the file? 
♦ Where is the file located? 



7 

Understanding Achieved File 
System Performance 

•  Hardware operations don’t match 
programmer model 
♦  Large block reads 
♦ Writes are read-modify-write 

•  Semantics don’t match most 
programmer’s model 
♦ POSIX semantics for read/write to a file is 

similar to sequential consistency 
♦ Makes it extremely hard to implement client-

side caching, metadata updates 
•  How much does this impact performance? 



8 

Few Applications Get Even 
1% of I/O Performance 

1 KB/s

1 MB/s

1 GB/s

1 TB/s

0 25% 50% 75% 100%
Applications

I/O
 T

hr
ou

gh
pu

t

platform Edison Intrepid Mira

Applications' Max Throughput

A Multiplatform Study of I/O Behavior on Petascale 
Supercomputers, Luu, Winslett, Gropp, Ross, Carns, Harms, 
Prabhat, Byna, Yao.  HPDC’15, to appear 



9 

POSIX Read/Write Semantics 

•  Once a write completes (at any 
process), any read, from any other 
process, must see that write 

•  Basic operations have requirements 
that are often not understood and can 
impact performance 
♦  In other words, few applications in scientific 

computing require this strong ordering of 
read and write operations between 
processes, but it impacts the performance 
and stability of the file system for everyone 



10 

POSIX Read and Write 

•  Read and Write are atomic 
•  No assumption on the number of 

processes (or their relationship to each 
other) that have a file open for reading 
and writing 

•  Consider this case 
•  Process 1                         Process 2 

read a                               … 
…                                     write b 
read b 



11 

POSIX Read and Write 

•  Reading a large block containing both a 
and b (Caching data) and using that data 
to perform the second read without going 
back to the original file is incorrect 

•  This requirement of read/write results in 
the over specification of the interface in 
many applications codes 
♦  Few applications require strong 

synchronization of read/write 
•  There are similar mismatches with other 

operations… 



12 

Open 

•  User’s model is that this gets a file descriptor 
and (perhaps) initializes local buffering 

•  Should be fast and (more importantly) 
scalable operation 

•  Problem: no Unix (or POSIX) interface for 
“exclusive access open” 
♦  File system must assume that other processes will 

open the file 
♦  Since the file system doesn’t know anything about a 

parallel program, there’s no case for when a unique 
job (rather than process) opens the file 



13 

Close 

•  User’s model is that this flushes the last data 
written to disk (if they think about that) and 
relinquishes the file descriptor 

•  When is data written out to disk? 
♦  On close? 
♦  Sometime later? 
♦  Never? 

•  Example: 
♦  Unused physical memory pages used as disk cache 

(at the server)   
♦  Combined with Uninterruptible Power Supply, data 

may never appear on disk 
♦  Makes it extremely hard to write a robust I/O 

benchmark 



14 

Seek 

•  User’s model is that this assigns the 
given location to a variable and takes 
about 1 nanosecond 

•  Changes position in file for “next” read 
•  May interact with implementation to 

cause data to flush data to disk (clear 
all caches) 
♦  In that case very expensive, particularly 

when multiple processes are seeking into 
the same file 



15 

Read/Fread 

•  Users expect read (unbuffered) to be faster 
than fread (buffered)  (rule: buffering is bad, 
particularly when done by the user) 
♦  Reverse true for short data (often by several orders 

of magnitude) 
♦  User thinks reason is “System calls are expensive” 
♦  Real culprit is atomic nature of read 

•  Fortran since F77 requires unique open 
(Section 12.3.2, lines 44-45) 
♦  Fortran spec designed for performance 
♦  Still doesn’t help for parallel programs 



16 

Write 

•  Users expect write to simply update 
that part of the file 
♦ Often expect buffering (fwrite) even with 

write, or caching by the runtime 
•  Users expect to get good performance 

with large writes 
♦ E.g., write more than 1MB 
♦ But efficient writes must be aligned with 

hardware/file system blocks 
• Unaligned writes can be much slower 
• May use general data path instead of special 

write-full-block path 



17 

What Does This Mean For I/O 
From Parallel Programs? 

•  Many ways to organize I/O 
♦ Should be considered in the context of the 

entire application workflow, not just one 
program 

•  Several natural choices 
♦ One file per program 

• May match workflow, other tools 

♦ One file per process 
•  Avoids performance and correctness bugs in the 

File system 
♦ One file per node/row/rack/… 

• Workarounds for performance and correctness 
issues 



18 

Non-Parallel I/O 

•  Non-parallel 
•  Performance worse than sequential 
•  Often legacy from before application was 

parallelized 



19 

Independent Parallel I/O 

•  Each process writes to a separate file 

•  Pro:  parallelism 
•  Con:  lots of small files to manage 
•  Either legacy from before MPI or done to 

address file system issues 



20 

Parallel I/O – Single File 

•  Parallel 
•  Performance can be great, good, bad, or terrible 

(even worse than sequential) 
•  Depends on correct implementation of concurrent 

updates in file (all too rare) 



21 

Other Approaches 

•  File systems with different consistency 
semantics 
♦ NFS (esp version 3) – essentially no 

consistency; safe for serial access only 
♦ PVFS – defines non-overlapping writes 
♦ HDFS – Parallel access to immutable files 

•  Other models of persistent data objects 
besides files 
♦ Databases 
♦ Object stores 



22 

Other Approaches: Hardware 

• The large performance gap 
between disks and memory makes 
performance difficult 

• New memory designs offering 
intermediate performance and cost 
♦ Non-volatile RAM (NVRAM) 
♦ Burst buffers (smooth out I/O 

performance demands with buffer to 
absorb writes) 
• Note useful only if POSIX semantics 

abandoned 



23 

Asking the Right Question 

• Do you want Unix or Fortran I/O? 
♦ Even with a significant performance 

penalty? 
• Do you want to change your 

program? 
♦ Even to another portable version with 

faster performance? 
♦ Not even for a factor of 40??? 

• User “requirements” can be 
misleading 



24 

Readings 

•  Darshan: P. Carns, K. Harms, W. 
Allcock, C. Bacon, S. Lang, R. Latham, 
R. Ross, Understanding and improving 
computational science storage access 
through continuous characterization, 
ACM Trans. on Storage, 7(3):8, 2011 
♦ Darshan is a tool to observe I/O usage by 

applications in HPC; current state-of-the-art 
in gathering data on HPC application I/O 
behavior 


