
Lecture 33: More on MPI I/O

William Gropp
www.cs.illinois.edu/~wgropp

2

Today’s Topics

• High level parallel I/O libraries
♦ Options for efficient I/O

• Example of I/O for a distributed
array

• Understanding why collective I/O
offers better performance

• Optimizing parallel I/O
performance

3

Portable File Formats

•  Ad-hoc file formats
♦ Difficult to collaborate
♦ Cannot leverage post-processing tools

•  MPI provides external32 data encoding
♦ No one uses this

•  High level I/O libraries
♦ netCDF and HDF5
♦ Better solutions than external32

• Define a “container” for data
-  Describes contents
-  May be queried (self-describing)

•  Standard format for metadata about the file
• Wide range of post-processing tools available

3

4

Higher Level I/O Libraries

•  Scientific applications work with
structured data and desire more self-
describing file formats

•  netCDF and HDF5 are two popular
“higher level” I/O libraries
♦ Abstract away details of file layout
♦ Provide standard, portable file formats
♦  Include metadata describing contents

•  For parallel machines, these should be
built on top of MPI-IO
♦ HDF5 has an MPI-IO option

•  http://www.hdfgroup.org/HDF5/
4

5

netCDF Data Model

•  netCDF provides a means for storing multiple,
multi-dimensional arrays in a single file, along
with information about the arrays

6

Parallel netCDF (PnetCDF)

•  (Serial) netCDF
♦ API for accessing multi-

dimensional data sets
♦ Portable file format
♦ Popular in both fusion and

climate communities
•  Parallel netCDF

♦ Very similar API to netCDF
♦ Tuned for better performance in

today’s computing environments
♦ Retains the file format so netCDF

and PnetCDF applications can
share files

♦ PnetCDF builds on top of any
MPI-IO implementation 6

ROMIO

PnetCDF

PVFS2

Cluster

IBM MPI

PnetCDF

GPFS

IBM BG

7

I/O in netCDF and PnetCDF

•  (Serial) netCDF
♦  Parallel read

•  All processes read the file independently
•  No possibility of collective optimizations

♦  Sequential write
•  Parallel writes are carried out by

shipping data to a single process
•  Just like our stdout checkpoint code

•  PnetCDF
♦  Parallel read/write to shared netCDF file
♦  Built on top of MPI-IO which utilizes

optimal I/O facilities of the parallel file
system and MPI-IO implementation

♦  Allows for MPI-IO hints and datatypes
for further optimization

P0 P1 P2 P3

netCDF

Parallel File System

Parallel netCDF

P0 P1 P2 P3

Parallel File System

8

 Optimizations

• Given complete access
information, an implementation
can perform optimizations such as:
♦ Data Sieving: Read large chunks and

extract what is really needed
♦ Collective I/O: Merge requests of

different processes into larger
requests

♦ Improved prefetching and caching

8

9

Bandwidth Results

•  3D distributed array access written as levels 0,
2, 3

•  Five different machines (dated but still relevant)
♦  NCSA Teragrid IA-64 cluster with GPFS and MPICH2
♦  ASC Purple at LLNL with GPFS and IBM’s MPI
♦  Jazz cluster at Argonne with PVFS and MPICH2
♦  Cray XT3 at ORNL with Lustre and Cray’s MPI
♦  SDSC Datastar with GPFS and IBM’s MPI

•  Since these are all different machines with
different amounts of I/O hardware, we compare
the performance of the different levels of access
on a particular machine, not across machines

9

10

Distributed Array Access

•  Array size: 512 x 512 x 512
•  Note log scaling!
•  Thanks to Weikuan Yu, Wei-keng Liao, Bill

Loewe, and Anthony Chan for these results.

Read Write

11

Detailed Example:
Distributed Array Access

•  Global array size: m x n
•  Array is distributed on a 2D grid of

processes: nproc(1) x nproc(2)
•  Coordinates of a process in the grid:

icoord(1), icoord(2) (0-based indices)
•  Local array stored in file in a layout

corresponding to global array in column-
major (Fortran) order

•  Two cases
♦  local array is stored contiguously in memory
♦  local array has “ghost area” around it in memory

12

P0

P5 P4

P2 P1

P3

icoord = (0,0)

icoord = (1,0)

icoord = (0,1)

icoord = (1,1) icoord = (1,2)

icoord = (0,2)

m

n

nproc(1) = 2, nproc(2) = 3

13

iarray_of_sizes(1) = m
iarray_of_sizes(2) = n
iarray_of_subsizes(1) = m/nproc(1)
iarray_of_subsizes(2) = n/nproc(2)
iarray_of_starts(1) = icoord(1) * iarray_of_subsizes(1) ! 0-based, even in Fortran
iarray_of_starts(2) = icoord(2) * iarray_of_subsizes(2) ! 0-based, even in Fortran
ndims = 2
zeroOffset = 0

call MPI_TYPE_CREATE_SUBARRAY(ndims, iarray_of_sizes, iarray_of_subsizes,
 iarray_of_starts, MPI_ORDER_FORTRAN, MPI_REAL, ifiletype, ierr)
call MPI_TYPE_COMMIT(ifiletype, ierr)

call MPI_FILE_OPEN(MPI_COMM_WORLD, ‘/home/me/test’,
 MPI_MODE_CREATE + MPI_MODE_RDWR, MPI_INFO_NULL, ifh, ierr)

call MPI_FILE_SET_VIEW(ifh, zeroOffset, MPI_REAL, ifiletype, ‘native’, MPI_INFO_NULL, ierr)

ilocal_size = iarray_of_subsizes(1) * iarray_of_subsizes(2)
call MPI_FILE_WRITE_ALL(ifh, local_array, ilocal_size, MPI_REAL, istatus, ierr)

call MPI_FILE_CLOSE(ifh, ierr)

 CASE I: LOCAL ARRAY
CONTIGUOUS IN MEMORY

14

! Create derived datatype describing layout of local array in memory

iarray_of_sizes(1) = m/nproc(1) + 4
iarray_of_sizes(2) = n/nproc(2) + 4
iarray_of_subsizes(1) = m/nproc(1)
iarray_of_subsizes(2) = n/nproc(2)
iarray_of_starts(1) = 2 ! 0-based, even in Fortran
iarray_of_starts(2) = 2 ! 0-based, even in Fortran
ndims = 2

call MPI_TYPE_CREATE_SUBARRAY(ndims, iarray_of_sizes, iarray_of_subsizes,
 iarray_of_starts, MPI_ORDER_FORTRAN, MPI_REAL, imemtype, ierr)
call MPI_TYPE_COMMIT(imemtype, ierr)

Continued...

Local array

Ghost area

CASE II: LOCAL ARRAY HAS GHOST
AREA OF SIZE 2 ON EACH SIDE

15

! Create derived datatype to describe layout of local array in the file

iarray_of_sizes(1) = m
iarray_of_sizes(2) = n
iarray_of_subsizes(1) = m/nproc(1)
iarray_of_subsizes(2) = n/nproc(2)
iarray_of_starts(1) = icoord(1) * iarray_of_subsizes(1) ! 0-based, even in Fortran
iarray_of_starts(2) = icoord(2) * iarray_of_subsizes(2) ! 0-based, even in Fortran
ndims = 2
zeroOffset = 0

call MPI_TYPE_CREATE_SUBARRAY(ndims, iarray_of_sizes, iarray_of_subsizes,
 iarray_of_starts, MPI_ORDER_FORTRAN, MPI_REAL, ifiletype, ierr)
call MPI_TYPE_COMMIT(ifiletype, ierr)

! Open the file, set the view, and write

call MPI_FILE_OPEN(MPI_COMM_WORLD, ‘/home/thakur/test’,
 MPI_MODE_CREATE + MPI_MODE_RDWR, MPI_INFO_NULL, ifh, ierr)
call MPI_FILE_SET_VIEW(ifh, zeroOffset, MPI_REAL, ifiletype, ‘native’, MPI_INFO_NULL, ierr)
call MPI_FILE_WRITE_ALL(ifh, local_array, 1, imemtype, istatus, ierr)
call MPI_FILE_CLOSE(ifh, ierr)

 CASE II continued…

16

Comments On MPI I/O

• Understand why collective I/O is
better, and how it enables efficient
implementation of I/O

• More on tuning MPI IO
performance

• Common errors in using MPI IO

17

Collective I/O

•  The next slide shows the trace for the
collective I/O case

•  Note that the entire program runs for a
little more than 1 sec

•  Each process does its entire I/O with a
single write or read operation

•  Data is exchanged with other processes
so that everyone gets what they need

•  Very efficient!

18

Collective I/O

18

19

Data Sieving

•  The next slide shows the trace for the data
sieving case

•  Note that the program runs for about 5 sec
now

•  Since the default data sieving buffer size
happens to be large enough, each process can
read with a single read operation, although
more data is read than actually needed
(because of holes)

•  Since PVFS doesn’t support file locking, data
sieving cannot be used for writes, resulting in
many small writes (1K per process)

20

Data Sieving

20

21

Posix I/O

•  The next slide shows the trace for Posix
I/O

•  Lots of small reads and writes (1K each
per process)

•  The reads take much longer than the
writes in this case because of a TCP-
incast problem happening in the switch

•  Total program takes about 80 sec
•  Very inefficient!

22

Posix I/O

22

23

Passing Hints

• MPI defines MPI_Info
• Provides an extensible list of

key=value pairs
• Used to package variable, optional

types of arguments that may not
be standard
♦ Used in IO, Dynamic, and RMA, as

well as with communicators

24

Passing Hints to MPI-IO

MPI_Info info;

MPI_Info_create(&info);

/* no. of I/O devices to be used for file striping */
MPI_Info_set(info, "striping_factor", "4");

/* the striping unit in bytes */
MPI_Info_set(info, "striping_unit", "65536");

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
 MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh);

MPI_Info_free(&info);

25

Passing Hints to MPI-IO (Fortran)

25

integer info

call MPI_Info_create(info, ierr)

! no. of I/O devices to be used for file striping
call MPI_Info_set(info, "striping_factor", "4”, ierr)

! the striping unit in bytes
call MPI_Info_set(info, "striping_unit", "65536”, ierr)

call MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", &
 MPI_MODE_CREATE + MPI_MODE_RDWR, info, &

 fh, ierr)

call MPI_Info_free(info, ierr)

26

Examples of Hints (used in
ROMIO)

•  striping_unit
•  striping_factor
•  cb_buffer_size
•  cb_nodes
•  ind_rd_buffer_size
•  ind_wr_buffer_size
•  start_iodevice
•  pfs_svr_buf
•  direct_read
•  direct_write

26

MPI predefined hints

New Algorithm
Parameters

Platform-specific hints

27

Common MPI I/O Hints
•  Controlling parallel file system

striping_factor - size of “strips” on I/O servers
striping_unit - number of I/O servers to stripe across
start_iodevice - which I/O server to start with

•  Controlling aggregation
cb_config_list - list of aggregators
cb_nodes - number of aggregators (upper bound)

•  Tuning ROMIO (most common MPI-IO
implementation) optimizations
romio_cb_read, romio_cb_write - aggregation on/off
romio_ds_read, romio_ds_write - data sieving on/off

27

28

Aggregation Example

•  Cluster of SMPs
•  One SMP box has fast connection to disks
•  Data is aggregated to processes on single box
•  Processes on that box perform I/O on behalf of the others

28

29

Ensuring Parallel I/O is
Parallel

•  On Blue Waters, by default, files are not
striped
♦  That is, there is no parallelism in distributing the file

across multiple disks
•  You can set the striping factor on a directory;

inherited by all files created in that directory
♦  lfs setstripe -c 4 <directory-name>

•  You can set the striping factor on a file when it
is created with MPI_File_open, using the hints,
e.g., set
♦  MPI_Info_set(info, “striping_factor”, “4”);
♦  MPI_Info_set(info, “cb_nodes”, “4”);

30

Finding Hints on Blue Waters

• Setting the environment variable
MPICH_MPIIO_HINTS_DISPLAY=1
causes the program to print out
the available I/O hints and their
values.

31

Example of Hints Display

PE 0: MPICH/MPIIO environment settings:
PE 0: MPICH_MPIIO_HINTS_DISPLAY = 1
PE 0: MPICH_MPIIO_HINTS = NULL
PE 0:
MPICH_MPIIO_ABORT_ON_RW_ERROR =
disable
PE 0: MPICH_MPIIO_CB_ALIGN = 2
PE 0: MPIIO hints for ioperf.out.tfaRGQ:
 cb_buffer_size = 16777216
 romio_cb_read = automatic
 romio_cb_write = automatic
 cb_nodes = 1
 cb_align = 2
 romio_no_indep_rw = false
 romio_cb_pfr = disable
 romio_cb_fr_types = aar
 romio_cb_fr_alignment = 1

 romio_cb_ds_threshold = 0
 romio_cb_alltoall = automatic
 ind_rd_buffer_size = 4194304
 ind_wr_buffer_size = 524288
 romio_ds_read = disable
 romio_ds_write = disable
 striping_factor = 1
 striping_unit = 1048576
 romio_lustre_start_iodevice = 0
 direct_io = false
 aggregator_placement_stride = -1
 abort_on_rw_error = disable
 cb_config_list = *:*

32

Summary of I/O Tuning

•  MPI I/O has many features that can help users
achieve high performance

•  The most important of these features are the
ability to specify noncontiguous accesses, the
collective I/O functions, and the ability to pass
hints to the implementation

•  Users must use the above features!
•  In particular, when accesses are

noncontiguous, users must create derived
datatypes, define file views, and use the
collective I/O functions

32

33

Common Errors in Using MPI-IO

•  Not defining file offsets as MPI_Offset in C and
integer (kind=MPI_OFFSET_KIND) in Fortran (or
perhaps integer*8 in Fortran 77)

•  In Fortran, passing the offset or displacement
directly as a constant (e.g., 0) in the absence of
function prototypes (F90 mpi module)

•  Using darray datatype for a block distribution
other than the one defined in darray (e.g., floor
division)

•  filetype defined using offsets that are not
monotonically nondecreasing, e.g., 0, 3, 8, 4, 6.
(can occur in irregular applications)

33

