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Today’s Topics 

• High level parallel I/O libraries 
♦ Options for efficient I/O 

• Example of I/O for a distributed 
array 

• Understanding why collective I/O 
offers better performance 

• Optimizing parallel I/O 
performance 
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Portable File Formats 

•  Ad-hoc file formats  
♦ Difficult to collaborate 
♦ Cannot leverage post-processing tools  

•  MPI provides external32 data encoding 
♦ No one uses this 

•  High level I/O libraries 
♦ netCDF and HDF5 
♦ Better solutions than external32 

• Define a “container” for data 
-  Describes contents 
-  May be queried (self-describing) 

•  Standard format for metadata about the file 
• Wide range of post-processing tools available 
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Higher Level I/O Libraries 

•  Scientific applications work with 
structured data and desire more self-
describing file formats 

•  netCDF and HDF5 are two popular 
“higher level” I/O libraries 
♦ Abstract away details of file layout 
♦ Provide standard, portable file formats 
♦  Include metadata describing contents 

•  For parallel machines, these should be 
built on top of MPI-IO 
♦ HDF5 has an MPI-IO option 

•  http://www.hdfgroup.org/HDF5/ 
4 
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netCDF Data Model 

•  netCDF provides a means for storing multiple, 
multi-dimensional arrays in a single file, along 
with information about the arrays 
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Parallel netCDF (PnetCDF) 

•  (Serial) netCDF 
♦ API for accessing multi-

dimensional data sets 
♦ Portable file format 
♦ Popular in both fusion and 

climate communities 
•  Parallel netCDF 

♦ Very similar API to netCDF 
♦ Tuned for better performance in 

today’s computing environments 
♦ Retains the file format so netCDF 

and PnetCDF applications can 
share files 

♦ PnetCDF builds on top of any 
MPI-IO implementation 6 
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I/O in netCDF and PnetCDF 

•  (Serial) netCDF 
♦  Parallel read 

•  All processes read the file independently 
•  No possibility of collective optimizations 

♦  Sequential write 
•  Parallel writes are carried out by 

shipping data to a single process 
•  Just like our stdout checkpoint code 

•  PnetCDF 
♦  Parallel read/write to shared netCDF file 
♦  Built on top of MPI-IO which utilizes 

optimal I/O facilities of the parallel file 
system and MPI-IO implementation 

♦  Allows for MPI-IO hints and datatypes 
for further optimization 

P0 P1 P2 P3 

netCDF 

Parallel File System 

Parallel netCDF 

P0 P1 P2 P3 

Parallel File System 
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 Optimizations 

• Given complete access 
information, an implementation 
can perform optimizations such as: 
♦ Data Sieving: Read large chunks and 

extract what is really needed 
♦ Collective I/O: Merge requests of 

different processes into larger 
requests 

♦ Improved prefetching and caching 
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Bandwidth Results 

•  3D distributed array access written as levels 0, 
2, 3 

•  Five different machines (dated but still relevant) 
♦  NCSA Teragrid IA-64 cluster with GPFS and MPICH2 
♦  ASC Purple at LLNL with GPFS and IBM’s MPI 
♦  Jazz cluster at Argonne with PVFS and MPICH2 
♦  Cray XT3 at ORNL with Lustre and Cray’s MPI 
♦  SDSC Datastar with GPFS and IBM’s MPI 

•  Since these are all different machines with 
different amounts of I/O hardware, we compare 
the performance of the different levels of access 
on a particular machine, not across machines 
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Distributed Array Access 

•  Array size: 512 x 512 x 512 
•  Note log scaling! 
•  Thanks to Weikuan Yu, Wei-keng Liao, Bill 

Loewe, and Anthony Chan for these results. 

Read Write 
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Detailed Example: 
Distributed Array Access 

•  Global array size: m x n 
•  Array is distributed on a 2D grid of 

processes: nproc(1) x nproc(2) 
•  Coordinates of a process in the grid: 

icoord(1), icoord(2)        (0-based indices) 
•  Local array stored in file in a layout 

corresponding to global array in column-
major (Fortran) order 

•  Two cases 
♦  local array is stored contiguously in memory 
♦  local array has “ghost area” around it in memory 
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P0 

P5 P4 

P2 P1 

P3 

icoord = (0,0) 

icoord = (1,0) 

icoord = (0,1) 

icoord = (1,1) icoord = (1,2) 

icoord = (0,2) 

m 

n 

nproc(1) = 2,  nproc(2) = 3 
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iarray_of_sizes(1) = m 
iarray_of_sizes(2) = n 
iarray_of_subsizes(1) = m/nproc(1) 
iarray_of_subsizes(2) = n/nproc(2) 
iarray_of_starts(1) = icoord(1) * iarray_of_subsizes(1)      ! 0-based, even in Fortran 
iarray_of_starts(2) = icoord(2) * iarray_of_subsizes(2)      ! 0-based, even in Fortran 
ndims = 2 
zeroOffset = 0 
 
call MPI_TYPE_CREATE_SUBARRAY(ndims, iarray_of_sizes, iarray_of_subsizes, 
            iarray_of_starts, MPI_ORDER_FORTRAN, MPI_REAL, ifiletype, ierr) 
call MPI_TYPE_COMMIT(ifiletype, ierr) 
 
call MPI_FILE_OPEN(MPI_COMM_WORLD, ‘/home/me/test’, 
            MPI_MODE_CREATE + MPI_MODE_RDWR, MPI_INFO_NULL, ifh, ierr) 
 
call MPI_FILE_SET_VIEW(ifh, zeroOffset, MPI_REAL, ifiletype, ‘native’, MPI_INFO_NULL, ierr) 
 
ilocal_size = iarray_of_subsizes(1) * iarray_of_subsizes(2) 
call MPI_FILE_WRITE_ALL(ifh, local_array, ilocal_size, MPI_REAL, istatus, ierr) 
 
call MPI_FILE_CLOSE(ifh, ierr) 

 CASE I: LOCAL ARRAY 
CONTIGUOUS IN MEMORY 
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!  Create derived datatype describing layout of local array in memory 
                   
iarray_of_sizes(1) = m/nproc(1) + 4 
iarray_of_sizes(2) = n/nproc(2) + 4 
iarray_of_subsizes(1) = m/nproc(1) 
iarray_of_subsizes(2) = n/nproc(2) 
iarray_of_starts(1) = 2                           ! 0-based, even in Fortran 
iarray_of_starts(2) = 2                           ! 0-based, even in Fortran 
ndims = 2 
 
call MPI_TYPE_CREATE_SUBARRAY(ndims, iarray_of_sizes, iarray_of_subsizes, 
            iarray_of_starts, MPI_ORDER_FORTRAN, MPI_REAL, imemtype, ierr) 
call MPI_TYPE_COMMIT(imemtype, ierr) 
 
                                                                                                            
Continued... 

Local array 

Ghost area 

CASE II: LOCAL ARRAY HAS GHOST 
AREA OF SIZE 2 ON EACH SIDE 
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! Create derived datatype to describe layout of local array in the file  
 
iarray_of_sizes(1) = m 
iarray_of_sizes(2) = n 
iarray_of_subsizes(1) = m/nproc(1) 
iarray_of_subsizes(2) = n/nproc(2) 
iarray_of_starts(1) = icoord(1) * iarray_of_subsizes(1)      ! 0-based, even in Fortran 
iarray_of_starts(2) = icoord(2) * iarray_of_subsizes(2)      ! 0-based, even in Fortran 
ndims = 2 
zeroOffset = 0 
 
call MPI_TYPE_CREATE_SUBARRAY(ndims, iarray_of_sizes, iarray_of_subsizes, 
            iarray_of_starts, MPI_ORDER_FORTRAN, MPI_REAL, ifiletype, ierr) 
call MPI_TYPE_COMMIT(ifiletype, ierr) 
 
! Open the file, set the view, and write 
 
call MPI_FILE_OPEN(MPI_COMM_WORLD, ‘/home/thakur/test’, 
            MPI_MODE_CREATE + MPI_MODE_RDWR, MPI_INFO_NULL, ifh, ierr) 
call MPI_FILE_SET_VIEW(ifh, zeroOffset, MPI_REAL, ifiletype, ‘native’, MPI_INFO_NULL, ierr) 
call MPI_FILE_WRITE_ALL(ifh, local_array, 1, imemtype, istatus, ierr) 
call MPI_FILE_CLOSE(ifh, ierr) 

 CASE II continued… 
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Comments On MPI I/O 

• Understand why collective I/O is 
better, and how it enables efficient 
implementation of I/O 

• More on tuning MPI IO 
performance 

• Common errors in using MPI IO 
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Collective I/O 

•  The next slide shows the trace for the 
collective I/O case 

•  Note that the entire program runs for a 
little more than 1 sec 

•  Each process does its entire I/O with a 
single write or read operation 

•  Data is exchanged with other processes 
so that everyone gets what they need 

•  Very efficient!  
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Collective I/O 

18 
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Data Sieving 

•  The next slide shows the trace for the data 
sieving case 

•  Note that the program runs for about 5 sec 
now 

•  Since the default data sieving buffer size 
happens to be large enough, each process can 
read with a single read operation, although 
more data is read than actually needed 
(because of holes)  

•  Since PVFS doesn’t support file locking, data 
sieving cannot be used for writes, resulting in 
many small writes (1K per process) 
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Data Sieving 

20 
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Posix I/O 

•  The next slide shows the trace for Posix 
I/O 

•  Lots of small reads and writes (1K each 
per process) 

•  The reads take much longer than the 
writes in this case because of a TCP-
incast problem happening in the switch 

•  Total program takes about 80 sec 
•  Very inefficient! 
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Posix I/O 

22 
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Passing Hints 

• MPI defines MPI_Info 
• Provides an extensible list of 

key=value pairs 
• Used to package variable, optional 

types of arguments that may not 
be standard 
♦ Used in IO, Dynamic, and RMA, as 

well as with communicators 



24 

Passing Hints to MPI-IO 

MPI_Info info; 
 
MPI_Info_create(&info); 
 
/* no. of I/O devices to be used for file striping */ 
MPI_Info_set(info, "striping_factor", "4"); 
 
/* the striping unit in bytes */ 
MPI_Info_set(info, "striping_unit", "65536"); 
 
MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",  
        MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh); 

 
MPI_Info_free(&info); 
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Passing Hints to MPI-IO (Fortran) 
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integer info 
 
call MPI_Info_create(info, ierr) 
 
! no. of I/O devices to be used for file striping  
call MPI_Info_set(info, "striping_factor", "4”, ierr ) 
 
! the striping unit in bytes  
call MPI_Info_set(info, "striping_unit", "65536”, ierr ) 
 
call MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", & 
         MPI_MODE_CREATE + MPI_MODE_RDWR, info, & 

              fh, ierr ) 
 
call MPI_Info_free( info, ierr ) 
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Examples of Hints (used in 
ROMIO) 

•  striping_unit 
•  striping_factor 
•  cb_buffer_size 
•  cb_nodes 
•  ind_rd_buffer_size 
•  ind_wr_buffer_size 
•  start_iodevice 
•  pfs_svr_buf 
•  direct_read 
•  direct_write 

26 

MPI predefined hints 

New Algorithm 
Parameters 

Platform-specific hints 
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Common MPI I/O Hints 
•  Controlling parallel file system 

striping_factor - size of “strips” on I/O servers 
striping_unit - number of I/O servers to stripe across 
start_iodevice - which I/O server to start with 

•  Controlling aggregation 
cb_config_list - list of aggregators 
cb_nodes - number of aggregators (upper bound) 

•  Tuning ROMIO (most common MPI-IO 
implementation) optimizations 
romio_cb_read, romio_cb_write - aggregation on/off 
romio_ds_read, romio_ds_write - data sieving on/off 
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Aggregation Example 

•  Cluster of SMPs 
•  One SMP box has fast connection to disks 
•  Data is aggregated to processes on single box 
•  Processes on that box perform I/O on behalf of the others 

28 



29 

Ensuring Parallel I/O is 
Parallel 

•  On Blue Waters, by default, files are not 
striped 
♦  That is, there is no parallelism in distributing the file 

across multiple disks 
•  You can set the striping factor on a directory; 

inherited by all files created in that directory 
♦  lfs setstripe -c 4 <directory-name> 

•  You can set the striping factor on a file when it 
is created with MPI_File_open, using the hints, 
e.g., set 
♦  MPI_Info_set(info, “striping_factor”, “4”); 
♦  MPI_Info_set(info, “cb_nodes”, “4”); 
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Finding Hints on Blue Waters 

• Setting the environment variable 
MPICH_MPIIO_HINTS_DISPLAY=1 
causes the program to print out 
the available I/O hints and their 
values. 
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Example of Hints Display 

PE 0: MPICH/MPIIO environment settings: 
PE 0:   MPICH_MPIIO_HINTS_DISPLAY  = 1 
PE 0:   MPICH_MPIIO_HINTS          = NULL 
PE 0:   
MPICH_MPIIO_ABORT_ON_RW_ERROR = 
disable 
PE 0:   MPICH_MPIIO_CB_ALIGN       = 2 
PE 0:   MPIIO hints for ioperf.out.tfaRGQ: 
          cb_buffer_size           = 16777216 
          romio_cb_read            = automatic 
          romio_cb_write           = automatic 
          cb_nodes                 = 1 
          cb_align                 = 2 
          romio_no_indep_rw        = false 
          romio_cb_pfr             = disable 
          romio_cb_fr_types        = aar 
          romio_cb_fr_alignment    = 1 
   

      romio_cb_ds_threshold    = 0 
      romio_cb_alltoall        = automatic 
      ind_rd_buffer_size       = 4194304 
      ind_wr_buffer_size       = 524288 
      romio_ds_read            = disable 
      romio_ds_write           = disable 
      striping_factor          = 1 
      striping_unit            = 1048576 
      romio_lustre_start_iodevice = 0 
      direct_io                = false 
      aggregator_placement_stride = -1 
      abort_on_rw_error        = disable 
      cb_config_list           = *:* 
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Summary of I/O Tuning 

•  MPI I/O has many features that can help users 
achieve high performance 

•  The most important of these features are the 
ability to specify noncontiguous accesses, the 
collective I/O functions, and the ability to pass 
hints to the implementation 

•  Users must use the above features! 
•  In particular, when accesses are 

noncontiguous, users must create derived 
datatypes, define file views, and use the 
collective I/O functions 
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Common Errors in Using MPI-IO 

•  Not defining file offsets as MPI_Offset in C and 
integer (kind=MPI_OFFSET_KIND) in Fortran (or 
perhaps integer*8 in Fortran 77) 

•  In Fortran, passing the offset or displacement 
directly as a constant (e.g., 0) in the absence of 
function prototypes (F90 mpi module) 

•  Using darray datatype for a block distribution 
other than the one defined in darray (e.g., floor 
division) 

•  filetype defined using offsets that are not 
monotonically nondecreasing, e.g., 0, 3, 8, 4, 6.  
(can occur in irregular applications) 
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