
Lecture 34: One-sided
Communication in MPI

William Gropp
www.cs.illinois.edu/~wgropp

2

Thanks to

• This material based on the SC14
Tutorial presented by
♦ Pavan Balaji
♦ William Gropp
♦ Torsten Hoefler
♦ Rajeev Thakur

3

One-Sided Communication

•  The basic idea of one-sided communication models is to
decouple data movement with process synchronization
♦  Should be able to move data without requiring that the remote

process synchronize
♦  Each process exposes a part of its memory to other processes
♦  Other processes can directly read from or write to this memory

Process 1 Process 2 Process 3

Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

Process 0

Private
Memory
Region

Public
Memory
Region

Public
Memory
Region

Public
Memory
Region

Public
Memory
Region

Global
Address
Space

Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

4

Comparing One-sided and
Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the
sending
process

is
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in
process 1
does not

affect
process 0

GET(data)

5

Advantages of RMA
Operations

•  Can do multiple data transfers with a single
synchronization operation
♦  like BSP model

•  Bypass tag matching
♦  effectively precomputed as part of remote offset

•  Some irregular communication patterns can be
more economically expressed

•  Can be significantly faster than send/receive
on systems with hardware support for remote
memory access, such as shared memory
systems

5

6

Irregular Communication
Patterns with RMA

•  If communication pattern is not known a
priori, but the data locations are known,
the send-receive model requires an extra
step to determine how many sends-
receives to issue

•  RMA, however, can handle it easily
because only the origin or target process
needs to issue the put or get call

•  This makes dynamic communication
easier to code in RMA

7

What we need to know in
MPI RMA

• How to create remote accessible
memory?

• Reading, Writing and Updating
remote memory

• Data Synchronization
• Memory Model

8

Creating Public Memory

•  Any memory created by a process is, by default,
only locally accessible
♦  X = malloc(100);

•  Once the memory is created, the user has to make
an explicit MPI call to declare a memory region as
remotely accessible
♦  MPI terminology for remotely accessible memory is a

“window”
♦  A group of processes collectively create a “window object”

•  Once a memory region is declared as remotely
accessible, all processes in the window object can
read/write data to this memory without explicitly
synchronizing with the target process

9

Remote Memory Access
Windows and Window Objects

9

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

10

Basic RMA Functions for
Communication

•  MPI_Win_create exposes local memory to RMA operation
by other processes in a communicator
♦  Collective operation
♦  Creates window object

•  MPI_Win_free deallocates window object

•  MPI_Put moves data from local memory to remote
memory

•  MPI_Get retrieves data from remote memory into local
memory

•  MPI_Accumulate updates remote memory using local
values

•  Data movement operations are non-blocking
•  Subsequent synchronization on window object

needed to ensure operation is complete
10

11

Window Creation Models

•  Four models exist
♦ MPI_WIN_CREATE

•  You already have an allocated buffer that you
would like to make remotely accessible

♦ MPI_WIN_ALLOCATE
•  You want to create a buffer and directly make it

remotely accessible
♦ MPI_WIN_CREATE_DYNAMIC

•  You don’t have a buffer yet, but will have one in
the future

♦ MPI_WIN_ALLOCATE_SHARED
•  You want multiple processes on the same node

share a buffer

12

MPI_WIN_CREATE

•  Expose a region of memory in an RMA window
♦  Only data exposed in a window can be accessed with RMA

ops.
•  Arguments:

♦  base - pointer to local data to expose
♦  size - size of local data in bytes (nonnegative integer)
♦  disp_unit - local unit size for displacements, in bytes

(positive integer)
♦  info - info argument (handle)
♦  comm - communicator (handle)
♦  win – window object (handle)

int MPI_Win_create(void *base, MPI_Aint size, !
" "int disp_unit, MPI_Info info, !
" "MPI_Comm comm, MPI_Win *win) !

13

Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{
 int *a; MPI_Win win;

 MPI_Init(&argc, &argv);

 /* create private memory */
 MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);
 /* use private memory like you normally would */
 a[0] = 1; a[1] = 2;

 /* collectively declare memory as remotely accessible */
 MPI_Win_create(a, 1000*sizeof(int), sizeof(int),
 MPI_INFO_NULL, MPI_COMM_WORLD, &win);

 /* Array ‘a’ is now accessibly by all processes in

 * MPI_COMM_WORLD */

 MPI_Win_free(&win);

 MPI_Free_mem(a);
 MPI_Finalize(); return 0;

}

14

MPI_WIN_ALLOCATE

•  Create a remotely accessible memory region in an RMA
window
♦  Only data exposed in a window can be accessed with RMA ops.

•  Arguments:
♦  size - size of local data in bytes (nonnegative integer)
♦  disp_unit- local unit size for displacements, in bytes (positive

integer)
♦  info - info argument (handle)
♦  comm - communicator (handle)
♦  baseptr - pointer to exposed local data
♦  win – window object (handle)

int MPI_Win_allocate(MPI_Aint size, int disp_unit, !
" "MPI_Info info, !
" "MPI_Comm comm, void *baseptr, MPI_Win *win) !

15

Example with
MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{
 int *a; MPI_Win win;

 MPI_Init(&argc, &argv);

 /* collectively create remote accessible memory in a window */
 MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,
 MPI_COMM_WORLD, &a, &win);

 /* Array ‘a’ is now accessible from all processes in

 * MPI_COMM_WORLD */

 MPI_Win_free(&win);

 MPI_Finalize(); return 0;
}

16

MPI_WIN_CREATE_DYNAMIC

•  Create an RMA window, to which data can later be
attached
♦  Only data exposed in a window can be accessed with RMA ops

•  Initially “empty”
♦  Application can dynamically attach/detach memory to this

window by calling MPI_Win_attach/detach
♦  Application can access data on this window only after a

memory region has been attached
•  Window origin is MPI_BOTTOM

♦  Displacements are segment addresses relative to
MPI_BOTTOM

♦  Must tell others the displacement after calling attach

int MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, !
" " " " " " " "MPI_Win *win) !

17

Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)
{
 int *a; MPI_Win win;

 MPI_Init(&argc, &argv);
 MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

 /* create private memory */
 a = (int *) malloc(1000 * sizeof(int));
 /* use private memory like you normally would */
 a[0] = 1; a[1] = 2;

 /* locally declare memory as remotely accessible */
 MPI_Win_attach(win, a, 1000*sizeof(int));

 /* Array ‘a’ is now accessible from all processes */

 /* undeclare remotely accessible memory */
 MPI_Win_detach(win, a); free(a);
 MPI_Win_free(&win);

 MPI_Finalize(); return 0;
}

18

Data movement

• MPI provides ability to read, write
and atomically modify data in
remotely accessible memory
regions
♦ MPI_GET
♦ MPI_PUT
♦ MPI_ACCUMULATE
♦ MPI_GET_ACCUMULATE
♦ MPI_COMPARE_AND_SWAP
♦ MPI_FETCH_AND_OP

19

Data movement: Put

• Move data from origin, to target
• Separate data description triples for

origin and target

Origin

MPI_Put(void *origin_addr, int origin_count,
 MPI_Datatype origin_dtype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely
Accessible
Memory

Private
Memory

20

Data movement: Get

• Move data to origin, from target

MPI_Get(void *origin_addr, int origin_count,
 MPI_Datatype origin_dtype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_dtype, MPI_Win win)

Origin Target

Remotely
Accessible
Memory

Private
Memory

21

Atomic Data Aggregation: Accumulate

•  Element-wise atomic update operation, similar to a put
♦  Reduces origin and target data into target buffer using op

argument as combiner
♦  Predefined ops only, no user-defined operations

•  Different data layouts
between target/origin OK
♦  Basic type elements

must match

•  Op = MPI_REPLACE
♦  Implements f(a,b)=b
♦  Element-wise atomic PUT

MPI_Accumulate(void *origin_addr, int origin_count,
 MPI_Datatype origin_dtype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

+=	

Origin Target

Remotely
Accessible
Memory

Private
Memory

22

Atomic Data Aggregation: Get Accumulate

•  Element-wise atomic read-modify-write
♦  Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE,

MPI_NO_OP, …
♦  Predefined ops only

•  Result stored in target buffer
•  Original data stored in result buf
•  Different data layouts between

target/origin OK
♦  Basic type elements must match

•  Element-wise atomic get with
MPI_NO_OP

•  Element-wise atomic swap with MPI_REPLACE

MPI_Get_accumulate(void *origin_addr, int origin_count,
 MPI_Datatype origin_dtype, void *result_addr,
 int result_count, MPI_Datatype result_dtype,
 int target_rank, MPI_Aint target_disp,
 int target_count, MPI_Datatype target_dype,
 MPI_Op op, MPI_Win win)

+=	

Origin Target

Remotely
Accessible
Memory

Private
Memory

23

Atomic Data Aggregation: CAS and FOP

•  FOP: Simpler version of MPI_Get_accumulate
♦  All buffers share a single predefined datatype
♦  No count argument (it’s always 1)
♦  Simpler interface allows hardware optimization

•  CAS: Atomic swap if target value is equal to
compare value

MPI_Compare_and_swap(void *origin_addr, void *compare_addr,
 void *result_addr, MPI_Datatype dtype, int target_rank,
 MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(void *origin_addr, void *result_addr,
 MPI_Datatype dtype, int target_rank,
 MPI_Aint target_disp, MPI_Op op, MPI_Win win)

24

Ordering of Operations in
MPI RMA

•  No guaranteed ordering for Put/Get operations
•  Result of concurrent Puts to the same location

undefined
•  Result of Get concurrent Put/Accumulate undefined

♦  Can be garbage in both cases
•  Result of concurrent accumulate operations to the

same location are defined according to the order in
which the occurred
♦  Atomic put: Accumulate with op = MPI_REPLACE
♦  Atomic get: Get_accumulate with op = MPI_NO_OP

•  Accumulate operations from a given process are
ordered by default
♦  User can tell the MPI implementation that ordering is not

required as optimization hint
♦  You can ask for only the needed orderings, e.g., RAW

(read-after-write), WAR, RAR, or WAW

25

RMA Synchronization Models
•  RMA data access model

♦  When is a process allowed to read/write remotely accessible
memory?

♦  When is data written by process X is available for process Y to read?
♦  RMA synchronization models define these semantics

•  Three synchronization models provided by MPI:
♦  Fence (active target)
♦  Post-start-complete-wait (generalized active target)
♦  Lock/Unlock (passive target)

•  Data accesses occur within “epochs”
♦  Access epochs: contain a set of operations issued by an origin

process
♦  Exposure epochs: enable remote processes to access and/or update

a target’s window
♦  Epochs define ordering and completion semantics
♦  Synchronization models provide mechanisms for establishing epochs

•  E.g., starting, ending, and synchronizing epochs

26

Fence: Active Target
Synchronization

•  Collective synchronization
model

•  Starts and ends access and
exposure epochs on all
processes in the window

•  All processes in group of “win”
do an MPI_WIN_FENCE to open
an epoch

•  Everyone can issue PUT/GET
operations to read/write data

•  Everyone does an
MPI_WIN_FENCE to close the
epoch

•  All operations complete at the
second fence synchronization

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)

P0 P1 P2

27

PSCW: Generalized Active
Target Synchronization

•  Like FENCE, but origin and target
specify who they communicate
with

•  Target: Exposure epoch
♦  Opened with MPI_Win_post
♦  Closed by MPI_Win_wait

•  Origin: Access epoch
♦  Opened by MPI_Win_start
♦  Closed by MPI_Win_complete

•  All synchronization operations may
block, to enforce P-S/C-W ordering
♦  Processes can be both origins and

targets

Start

Complete

Post

Wait

Target Origin

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)
MPI_Win_complete/wait(MPI_Win win)

28

Using Active Target
Synchronization

•  Active target RMA works well for many BSP-
style program
♦  Halo exchange
♦  Dense linear algebra

•  How might you write the dense matrix-vector
multiply using
♦  MPI_Get: Instead of Allgather
♦  MPI_Put: Instead of send/receive

•  Do you think using Get instead of Allgather is
a good choice at scale? Why or why not? How
would use use a performance model to argue
your choice?

