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One-Sided Communication 

•  The basic idea of one-sided communication models is to 
decouple data movement with process synchronization 
♦  Should be able to move data without requiring that the remote 

process synchronize 
♦  Each process exposes a part of its memory to other processes 
♦  Other processes can directly read from or write to this memory 
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Comparing One-sided and 
Two-sided Programming 
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Advantages of RMA 
Operations 

•  Can do multiple data transfers with a single 
synchronization operation 
♦  like BSP model 

•  Bypass tag matching 
♦  effectively precomputed as part of remote offset 

•  Some irregular communication patterns can be 
more economically expressed 

•  Can be significantly faster than send/receive 
on systems with hardware support for remote 
memory access, such as shared memory 
systems 

5 
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Irregular Communication 
Patterns with RMA 

•  If communication pattern is not known a 
priori, but the data locations are known, 
the send-receive model requires an extra 
step to determine how many sends-
receives to issue 

•  RMA, however, can handle it easily 
because only the origin or target process 
needs to issue the put or get call 

•  This makes dynamic communication 
easier to code in RMA 
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What we need to know in 
MPI RMA 

• How to create remote accessible 
memory? 

• Reading, Writing and Updating 
remote memory 

• Data Synchronization 
• Memory Model 
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Creating Public Memory 

•  Any memory created by a process is, by default, 
only locally accessible 
♦  X = malloc(100); 

•  Once the memory is created, the user has to make 
an explicit MPI call to declare a memory region as 
remotely accessible 
♦  MPI terminology for remotely accessible memory is a 

“window” 
♦  A group of processes collectively create a “window object” 

•  Once a memory region is declared as remotely 
accessible, all processes in the window object can 
read/write data to this memory without explicitly 
synchronizing with the target process 
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Remote Memory Access 
Windows and Window Objects 
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Basic RMA Functions for 
Communication  

•  MPI_Win_create exposes local memory to RMA operation 
by other processes in a communicator 
♦  Collective operation  
♦  Creates window object 

•  MPI_Win_free deallocates window object 

•  MPI_Put moves data from local memory to remote 
memory 

•  MPI_Get retrieves data from remote memory into local 
memory 

•  MPI_Accumulate updates remote memory using local 
values 

•  Data movement operations are non-blocking 
•  Subsequent synchronization on window object 

needed to ensure operation is complete 
10 
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Window Creation Models 

•  Four models exist 
♦ MPI_WIN_CREATE 

•  You already have an allocated buffer that you 
would like to make remotely accessible 

♦ MPI_WIN_ALLOCATE 
•  You want to create a buffer and directly make it 

remotely accessible 
♦ MPI_WIN_CREATE_DYNAMIC 

•  You don’t have a buffer yet, but will have one in 
the future 

♦ MPI_WIN_ALLOCATE_SHARED 
•  You want multiple processes on the same node 

share a buffer 
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MPI_WIN_CREATE 

•  Expose a region of memory in an RMA window 
♦  Only data exposed in a window can be accessed with RMA 

ops. 
•  Arguments: 

♦  base  - pointer to local data to expose 
♦  size  - size of local data in bytes (nonnegative integer) 
♦  disp_unit - local unit size for displacements, in bytes 

(positive integer) 
♦  info  - info argument (handle) 
♦  comm  - communicator (handle) 
♦  win  – window object (handle) 

int MPI_Win_create(void *base, MPI_Aint size, !
" "int disp_unit, MPI_Info info, !
" "MPI_Comm comm, MPI_Win *win) !
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Example with MPI_WIN_CREATE 
int main(int argc, char ** argv) 
{ 
    int *a;    MPI_Win win; 
 
    MPI_Init(&argc, &argv); 
 
    /* create private memory */ 
    MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a); 
    /* use private memory like you normally would */ 
    a[0] = 1;  a[1] = 2; 
 
    /* collectively declare memory as remotely accessible */ 
    MPI_Win_create(a, 1000*sizeof(int), sizeof(int),  
    MPI_INFO_NULL, MPI_COMM_WORLD, &win); 

 
  /* Array ‘a’ is now accessibly by all processes in 

     * MPI_COMM_WORLD */ 
 
  MPI_Win_free(&win); 

    MPI_Free_mem(a); 
  MPI_Finalize(); return 0; 

} 
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MPI_WIN_ALLOCATE 

•  Create a remotely accessible memory region in an RMA 
window 
♦  Only data exposed in a window can be accessed with RMA ops. 

•  Arguments: 
♦  size  - size of local data in bytes (nonnegative integer) 
♦  disp_unit- local unit size for displacements, in bytes (positive 

integer) 
♦  info  - info argument (handle) 
♦  comm  - communicator (handle) 
♦  baseptr  - pointer to exposed local data 
♦  win  – window object (handle) 

int MPI_Win_allocate(MPI_Aint size, int disp_unit, !
" "MPI_Info info, !
" "MPI_Comm comm, void *baseptr, MPI_Win *win) !
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Example with 
MPI_WIN_ALLOCATE 

int main(int argc, char ** argv) 
{ 
    int *a;    MPI_Win win; 
 
    MPI_Init(&argc, &argv); 
 
    /* collectively create remote accessible memory in a window */ 
    MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL, 
                     MPI_COMM_WORLD, &a, &win); 
 
  /* Array ‘a’ is now accessible from all processes in 

     * MPI_COMM_WORLD */ 
 
    MPI_Win_free(&win); 
 
      MPI_Finalize(); return 0; 
} 
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MPI_WIN_CREATE_DYNAMIC 

•  Create an RMA window, to which data can later be 
attached 
♦  Only data exposed in a window can be accessed with RMA ops 

•  Initially “empty” 
♦  Application can dynamically attach/detach memory to this 

window by calling MPI_Win_attach/detach 
♦  Application can access data on this window only after a 

memory region has been attached 
•  Window origin is MPI_BOTTOM 

♦  Displacements are segment addresses relative to 
MPI_BOTTOM 

♦  Must tell others the displacement after calling attach 

int MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, !
" " " " " " " "MPI_Win *win) !
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Example with MPI_WIN_CREATE_DYNAMIC 
int main(int argc, char ** argv) 
{ 
    int *a;    MPI_Win win; 
 
    MPI_Init(&argc, &argv); 
    MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win); 
 
    /* create private memory */ 
    a = (int *) malloc(1000 * sizeof(int)); 
    /* use private memory like you normally would */ 
    a[0] = 1;  a[1] = 2; 
 
    /* locally declare memory as remotely accessible */ 
    MPI_Win_attach(win, a, 1000*sizeof(int)); 
 
  /* Array ‘a’ is now accessible from all processes */ 

 
    /* undeclare remotely accessible memory */ 
    MPI_Win_detach(win, a);  free(a); 
    MPI_Win_free(&win); 
 
    MPI_Finalize(); return 0; 
} 
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Data movement 

• MPI provides ability to read, write 
and atomically modify data in 
remotely accessible memory 
regions 
♦ MPI_GET 
♦ MPI_PUT 
♦ MPI_ACCUMULATE 
♦ MPI_GET_ACCUMULATE 
♦ MPI_COMPARE_AND_SWAP 
♦ MPI_FETCH_AND_OP 
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Data movement: Put 

• Move data from origin, to target 
• Separate data description triples for 

origin and target 

Origin 

MPI_Put(void *origin_addr, int origin_count, 
 MPI_Datatype origin_dtype, int target_rank, 
 MPI_Aint target_disp, int target_count, 
 MPI_Datatype target_dtype, MPI_Win win) 
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Data movement: Get 

• Move data to origin, from target 

MPI_Get(void *origin_addr, int origin_count, 
 MPI_Datatype origin_dtype, int target_rank, 
 MPI_Aint target_disp, int target_count, 
 MPI_Datatype target_dtype, MPI_Win win) 
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Atomic Data Aggregation: Accumulate 

•  Element-wise atomic update operation, similar to a put 
♦  Reduces origin and target data into target buffer using op 

argument as combiner 
♦  Predefined ops only, no user-defined operations 

•  Different data layouts 
between target/origin OK 
♦  Basic type elements  

must match 

•  Op = MPI_REPLACE 
♦  Implements f(a,b)=b 
♦  Element-wise atomic PUT 

MPI_Accumulate(void *origin_addr, int origin_count, 
 MPI_Datatype origin_dtype, int target_rank, 
 MPI_Aint target_disp, int target_count, 
 MPI_Datatype target_dtype, MPI_Op op, MPI_Win win) 
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Atomic Data Aggregation: Get Accumulate 

•  Element-wise atomic read-modify-write 
♦  Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, 

MPI_NO_OP, … 
♦  Predefined ops only 

•  Result stored in target buffer 
•  Original data stored in result buf 
•  Different data layouts between 

target/origin OK 
♦  Basic type elements must match 

•  Element-wise atomic get with  
MPI_NO_OP 

•  Element-wise atomic swap with MPI_REPLACE 

MPI_Get_accumulate(void *origin_addr, int origin_count, 
 MPI_Datatype origin_dtype, void *result_addr, 
 int result_count, MPI_Datatype result_dtype, 
 int target_rank, MPI_Aint target_disp, 
 int target_count, MPI_Datatype target_dype, 
 MPI_Op op, MPI_Win win) 

+=	
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Atomic Data Aggregation: CAS and FOP 

•  FOP: Simpler version of MPI_Get_accumulate 
♦  All buffers share a single predefined datatype 
♦  No count argument (it’s always 1) 
♦  Simpler interface allows hardware optimization 

•  CAS: Atomic swap if target value is equal to 
compare value 

MPI_Compare_and_swap(void *origin_addr, void *compare_addr, 
 void *result_addr, MPI_Datatype dtype, int target_rank, 
 MPI_Aint target_disp, MPI_Win win) 

MPI_Fetch_and_op(void *origin_addr, void *result_addr, 
 MPI_Datatype dtype, int target_rank, 
 MPI_Aint target_disp, MPI_Op op, MPI_Win win) 
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Ordering of Operations in 
MPI RMA 

•  No guaranteed ordering for Put/Get operations 
•  Result of concurrent Puts to the same location 

undefined 
•  Result of Get concurrent Put/Accumulate undefined 

♦  Can be garbage in both cases 
•  Result of concurrent accumulate operations to the 

same location are defined according to the order in 
which the occurred 
♦  Atomic put: Accumulate with op = MPI_REPLACE 
♦  Atomic get: Get_accumulate with op = MPI_NO_OP 

•  Accumulate operations from a given process are 
ordered by default 
♦  User can tell the MPI implementation that ordering is not 

required as optimization hint 
♦  You can ask for only the needed orderings, e.g., RAW 

(read-after-write), WAR, RAR, or WAW 
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RMA Synchronization Models 
•  RMA data access model 

♦  When is a process allowed to read/write remotely accessible 
memory? 

♦  When is data written by process X is available for process Y to read? 
♦  RMA synchronization models define these semantics 

•  Three synchronization models provided by MPI: 
♦  Fence (active target) 
♦  Post-start-complete-wait (generalized active target) 
♦  Lock/Unlock (passive target) 

•  Data accesses occur within “epochs” 
♦  Access epochs: contain a set of operations issued by an origin 

process 
♦  Exposure epochs: enable remote processes to access and/or update 

a target’s window 
♦  Epochs define ordering and completion semantics 
♦  Synchronization models provide mechanisms for establishing epochs 

•  E.g., starting, ending, and synchronizing epochs 
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Fence: Active Target 
Synchronization 

•  Collective synchronization 
model 

•  Starts and ends access and 
exposure epochs on all 
processes in the window 

•  All processes in group of “win” 
do an MPI_WIN_FENCE to open 
an epoch 

•  Everyone can issue PUT/GET 
operations to read/write data 

•  Everyone does an 
MPI_WIN_FENCE to close the 
epoch 

•  All operations complete at the 
second fence synchronization 

Fence 

Fence 

MPI_Win_fence(int assert, MPI_Win win) 

P0 P1 P2 
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PSCW: Generalized Active 
Target Synchronization 

•  Like FENCE, but origin and target 
specify who they communicate 
with 

•  Target: Exposure epoch 
♦  Opened with MPI_Win_post 
♦  Closed by MPI_Win_wait 

•  Origin: Access epoch 
♦  Opened by MPI_Win_start 
♦  Closed by MPI_Win_complete 

•  All synchronization operations may 
block, to enforce P-S/C-W ordering 
♦  Processes can be both origins and 

targets 

Start 

Complete 

Post 

Wait 

Target Origin 

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win) 
MPI_Win_complete/wait(MPI_Win win) 
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Using Active Target 
Synchronization 

•  Active target RMA works well for many BSP-
style program 
♦  Halo exchange 
♦  Dense linear algebra 

•  How might you write the dense matrix-vector 
multiply using 
♦  MPI_Get: Instead of Allgather 
♦  MPI_Put: Instead of send/receive 

•  Do you think using Get instead of Allgather is 
a good choice at scale?  Why or why not?  How 
would use use a performance model to argue 
your choice? 


