
Lecture 35: More on
One Sided Communication

William Gropp
www.cs.illinois.edu/~wgropp

2

Synchronization in MPI RMA

• Active target requires cooperation
by all processes in the group of the
window object
♦ MPI_Win_fence, MPI_Win_{post/

start/complete/wait/test}
♦ Good for many but not all RMA

applications
• What if each process may need to

independently access data?
♦ Use Passive target synchronization

3

Lock/Unlock: Passive Target
Synchronization

•  Passive mode: One-sided, asynchronous
communication
♦  Target does not participate in communication operation

•  Shared memory-like model

Active Target Mode Passive Target Mode

Lock

Unlock

Start

Complete

Post

Wait

4

Passive Target
Synchronization

•  Lock/Unlock: Begin/end passive mode epoch
♦  Target process does not make a corresponding MPI call
♦  Can initiate multiple passive target epochs to different processes
♦  Concurrent epochs to same process not allowed (affects threads)

•  Lock type
♦  SHARED: Other processes using shared can access concurrently
♦  EXCLUSIVE: No other processes can access concurrently

•  Flush: Remotely complete RMA operations to the target process
♦  After completion, data can be read by target process or a different

process
•  Flush_local: Locally complete RMA operations to the target process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)

MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)

5

Lock is not Lock

•  The name “Lock” is unfortunate
♦  Lock is really “begin epoch”
♦ Unlock is really “end epoch”

•  An MPI “Lock” does not establish a
critical section or mutual exclusion
♦ With “MPI_LOCK_EXCLUSIVE” the RMA

operations have exclusive access to the
data they access/update during the time
that they access the remote window

♦ This is very different than a “lock” in the
sense of a thread lock

6

Understanding the MPI RMA
Completion Model

• Very relaxed
♦ To give the implementer the greatest

flexibility
♦ Describing this relaxed model precisely

is difficult
• Only Implementer needs to obey the rules

♦ But it doesn’t matter; simple rules work
for most programmers

• When does the data actually move?

7

Data Moves Early

MPI_Win_lock
(win_lock returns)
MPI_Put

MPI_Put

MPI_Get

MPI_Win_unlock

(unlock returns)

(lock granted)

(window updated)

(window updated)
(window accessed)

(lock released)

Process 0 Process 1

8

Data Moves Late

MPI_Win_lock

MPI_Put

MPI_Put

MPI_Get

MPI_Win_unlock

(unlock returns)

(acquire lock, process
requests, release lock)

(save information)

(save information)

(save information)

(save information)

Process 0 Process 1

9

Understanding Why Late May
Be Good

•  Use a simple performance model:
♦ Assume data size is small
♦ Each communication on network takes time

L
•  Early approach:

♦ 8 separate messages, so 8L
•  Late approach:

♦ 2 messages (including data), so 2L
•  Late approach is 4 x faster than the

early approach for small amounts of
data

10

Understanding Why Early
May Be Good

• Use a simple performance model:
♦ Assume data size is large
♦ Each data communication on network

takes time L+rn, each control
message takes time L

♦ Assume communication can be
overlapped with computation or other
communication, but that latency (L)
cannot be overlapped

11

Understanding Why Early
May Be Good

• Early approach:
♦ 5L + 3(L+rn); all but the 8L can be

overlapped with computation
• Late approach:

♦ 2 messages, so 2L + 3rn. Nothing
may be overlapped

• Assuming full overlap, Early is 8L
and Late is 2L+3rn, so Late can be
arbitrarily slower than Early; equal
when n = 2L/r

12

Advanced Passive Target
Synchronization

•  Lock_all: Shared lock, passive target epoch
to all other processes
♦ Expected usage is long-lived: lock_all, put/get,

flush, …, unlock_all
•  Flush_all – remotely complete RMA

operations to all processes
•  Flush_local_all – locally complete RMA

operations to all processes

MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)

13

Implementing GA-like
Computation by RMA Lock/Unlock

GET	
 GET	
 atomic ACC	
 atomic ACC	
GET	
GET	

local buffer on
P0	

local buffer on
P1	

DGEMM	
 DGEMM	

14

Code Example

• ga_mpi_ddt_rma.c
• Only synchronization from origin

processes, no synchronization from
target processes

• Code thanks to Xin Zhao, posted
on Moodle

15

Which synchronization mode
should I use, when?

•  RMA communication has low overheads versus send/recv
♦  Two-sided: Matching, queuing, buffering, unexpected receives,

etc…
♦  One-sided: No matching, no buffering, always ready to receive
♦  Utilize RDMA provided by high-speed interconnects (e.g.

InfiniBand)
•  Active mode: bulk synchronization

♦  E.g. ghost cell exchange
•  Passive mode: asynchronous data movement

♦  Useful when dataset is large, requiring memory of multiple
nodes

♦  Also, when data access and synchronization pattern is dynamic

♦  Common use case: distributed, shared arrays
•  Passive target locking mode

♦  Lock/unlock – Useful when exclusive epochs are needed
♦  Lock_all/unlock_all – Useful when only shared epochs are

needed

16

MPI RMA Memory Model

•  MPI-3 provides two memory
models: separate and unified

•  MPI-2: Separate Model
♦  Logical public and private copies
♦  MPI provides software coherence

between window copies
♦  Extremely portable, to systems that

don’t provide hardware coherence
•  MPI-3: New Unified Model

♦  Single copy of the window
♦  System must provide coherence
♦  Superset of separate semantics

•  E.g. allows concurrent local/remote access

♦  Provides access to full performance
potential of hardware

Public	

Copy	

Private	

Copy	

Unified	

Copy	

17

MPI RMA Memory Model
(separate windows)

•  Very portable, compatible with non-coherent memory
systems

•  Limits concurrent accesses to enable software coherence

Public	

Copy	

Private	

Copy	

Same source
Same epoch Diff. Sources

load store store

X X

X

18

MPI RMA Memory Model
(unified windows)

•  Allows concurrent local/remote accesses
•  Concurrent, conflicting operations are allowed (not invalid)

♦  Outcome is not defined by MPI (defined by the hardware)
•  Can enable better performance by reducing synchronization

Unified	

Copy	

Same source
Same epoch Diff. Sources

load store store

X

19

MPI RMA Operation
Compatibility (Separate)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL X X

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations when two
or more processes access a window at the same target concurrently.

OVL – Overlapping operations permitted
NOVL – Nonoverlapping operations permitted
X – Combining these operations is OK, but data might be garbage

20

MPI RMA Operation
Compatibility (Unified)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL NOVL OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations
when two or more processes access a window at the same
target concurrently.

OVL – Overlapping operations permitted
NOVL – Nonoverlapping operations permitted

21

Summary of MPI RMA

•  MPI provides a powerful one-sided
communication model

•  General and precisely specified model
♦ Complexity of the precision is sometimes

confused with complexity for the user
•  There are simple models for the user that address

most common use cases

•  Implementations improving but many still
poor, so test performance before using

•  One more feature – MPI and shared
memory – in the next lecture

