
Lecture 36: MPI, Hybrid
Programming, and Shared

Memory

William Gropp
www.cs.illinois.edu/~wgropp

2

Thanks to

• This material based on the SC14
Tutorial presented by
♦ Pavan Balaji
♦ William Gropp
♦ Torsten Hoefler
♦ Rajeev Thakur

3

MPI and Threads

•  MPI describes parallelism between processes
(with separate address spaces)

•  Thread parallelism provides a shared-memory
model within a process

•  OpenMP and Pthreads are common models
♦  OpenMP provides convenient features for loop-level

parallelism. Threads are created and managed by
the compiler, based on user directives.

♦  Pthreads provide more complex and dynamic
approaches. Threads are created and managed
explicitly by the user.

4

Programming for Multicore

•  Common options for programming
multicore clusters
♦ All MPI

• MPI between processes both within a node and
across nodes

• MPI internally uses shared memory to
communicate within a node

♦ MPI + OpenMP
• Use OpenMP within a node and MPI across nodes

♦ MPI + Pthreads
• Use Pthreads within a node and MPI across nodes

•  The latter two approaches are known as
“hybrid programming”

5

Hybrid Programming with
MPI+Threads

•  In MPI-only programming,
each MPI process has a
single program counter

•  In MPI+threads hybrid
programming, there can be
multiple threads executing
simultaneously
♦  All threads share all MPI

objects (communicators,
requests)

♦  The MPI implementation
might need to take
precautions to make sure the
state of the MPI
implementation is consistent

Rank
0

Rank
1

MPI-only
Programming

Rank
0

Rank
1

MPI+Threads Hybrid
Programming

6

MPI’s Four Levels of Thread
Safety

•  MPI defines four levels of thread safety -- these are
commitments the application makes to the MPI
♦  MPI_THREAD_SINGLE: only one thread exists in the application
♦  MPI_THREAD_FUNNELED: multithreaded, but only the main

thread makes MPI calls (the one that called MPI_Init_thread)
♦  MPI_THREAD_SERIALIZED: multithreaded, but only one thread at

a time makes MPI calls
♦  MPI_THREAD_MULTIPLE: multithreaded and any thread can make

MPI calls at any time (with some restrictions to avoid races – see
next slide)

•  Thread levels are in increasing order
♦  If an application works in FUNNELED mode, it can work in

SERIALIZED
•  MPI defines an alternative to MPI_Init

♦  MPI_Init_thread(requested, provided)
•  Application specifies level it needs; MPI implementation returns level it

supports

7

MPI_THREAD_SINGLE

•  There are no threads in the system
♦ E.g., there are no OpenMP parallel regions

int main(int argc, char ** argv)
{
 int buf[100];

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 for (i = 0; i < 100; i++)
 compute(buf[i]);

 /* Do MPI stuff */

 MPI_Finalize();

 return 0;
}

8

MPI_THREAD_FUNNELED
•  All MPI calls are made by the master thread

♦  Outside the OpenMP parallel regions
♦  In OpenMP master regions

int main(int argc, char ** argv)
{
 int buf[100], provided;

 MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

#pragma omp parallel for
 for (i = 0; i < 100; i++)
 compute(buf[i]);

 /* Do MPI stuff */

 MPI_Finalize();

 return 0;
}

9

MPI_THREAD_SERIALIZED
•  Only one thread can make MPI calls at a time

♦  Protected by OpenMP critical regions
int main(int argc, char ** argv)
{
 int buf[100], provided;

 MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

#pragma omp parallel for
 for (i = 0; i < 100; i++) {
 compute(buf[i]);
#pragma omp critical
 /* Do MPI stuff */
 }

 MPI_Finalize();

 return 0;
}

10

MPI_THREAD_MULTIPLE

•  Any thread can make MPI calls any time
(restrictions apply)

int main(int argc, char ** argv)
{
 int buf[100], provided;

 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

#pragma omp parallel for
 for (i = 0; i < 100; i++) {
 compute(buf[i]);
 /* Do MPI stuff */
 }

 MPI_Finalize();

 return 0;
}

11

Threads and MPI

•  An implementation is not required to support
levels higher than MPI_THREAD_SINGLE; that
is, an implementation is not required to be
thread safe

•  A fully thread-safe implementation will support
MPI_THREAD_MULTIPLE

•  A program that calls MPI_Init (instead of
MPI_Init_thread) should assume that only
MPI_THREAD_SINGLE is supported

•  A threaded MPI program that does not call
MPI_Init_thread is an incorrect program
(common user error)

12

Specification of
MPI_THREAD_MULTIPLE

•  Ordering: When multiple threads make MPI calls concurrently, the
outcome will be as if the calls executed sequentially in some (any)
order
♦  Ordering is maintained within each thread
♦  User must ensure that collective operations on the same communicator,

window, or file handle are correctly ordered among threads
•  E.g., cannot call a broadcast on one thread and a reduce on another thread on

the same communicator

♦  It is the user's responsibility to prevent races when threads in the same
application post conflicting MPI calls

•  E.g., accessing an info object from one thread and freeing it from another thread

•  Blocking: Blocking MPI calls will block only the calling thread and will
not prevent other threads from running or executing MPI functions

13

Ordering in
MPI_THREAD_MULTIPLE: Incorrect

Example with Collectives

•  P0 and P1 can have different orderings of Bcast
and Barrier

•  Here the user must use some kind of
synchronization to ensure that either thread 1 or
thread 2 gets scheduled first on both processes

•  Otherwise a broadcast may get matched with a
barrier on the same communicator, which is not
valid in MPI

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)

Thread 1

Thread 2

14

Ordering in
MPI_THREAD_MULTIPLE: Incorrect

Example with RMA
int main(int argc, char ** argv)
{
 /* Initialize MPI and RMA window */

#pragma omp parallel for
 for (i = 0; i < 100; i++) {
 target = rand();
 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, target, 0, win);
 MPI_Put(..., win);
 MPI_Win_unlock(target, win);
 }

 /* Free MPI and RMA window */

 return 0;
}

Different threads can lock the same process causing multiple
locks to the same target before the first lock is unlocked

15

Ordering in
MPI_THREAD_MULTIPLE: Incorrect
Example with Object Management

• The user has to make sure that one
thread is not using an object while
another thread is freeing it
♦ This is essentially an ordering issue; the

object might get freed before it is used

Process 0

MPI_Bcast(comm)

MPI_Comm_free(comm)

Process 1

MPI_Bcast(comm)

MPI_Comm_free(comm)

Thread 1

Thread 2

16

Blocking Calls in MPI_THREAD_MULTIPLE:
Correct Example

•  An implementation must ensure that this
example never deadlocks for any ordering of
thread execution

•  That means the implementation cannot simply
acquire a thread lock and block within an MPI
function. It must release the lock to allow other
threads to make progress.

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2

17

The Current Situation

•  All MPI implementations support MPI_THREAD_SINGLE
(duh).

•  They probably support MPI_THREAD_FUNNELED even if
they don’t admit it.
♦  Does require thread-safe malloc
♦  Probably OK in OpenMP programs

•  Many (but not all) implementations support
THREAD_MULTIPLE
♦  Hard to implement efficiently though (lock granularity

issue)
•  “Easy” OpenMP programs (loops parallelized with

OpenMP, communication in between loops) only need
FUNNELED
♦  So don’t need “thread-safe” MPI for many hybrid programs
♦  But watch out for Amdahl’s Law!

18

Performance with
MPI_THREAD_MULTIPLE

•  Thread safety does not come for free
•  The implementation must protect

certain data structures or parts of code
with mutexes or critical sections

•  To measure the performance impact,
we ran tests to measure communication
performance when using multiple
threads versus multiple processes
♦  For results, see Thakur/Gropp paper: “Test

Suite for Evaluating Performance of
Multithreaded MPI Communication,” Parallel
Computing, 2009

19

Message Rate Results on BG/P

Message Rate Benchmark

“Enabling Concurrent
Multithreaded MPI
Communication on Multicore
Petascale Systems” EuroMPI
2010

20

Why is it hard to optimize
MPI_THREAD_MULTIPLE

•  MPI internally maintains several
resources

•  Because of MPI semantics, it is required
that all threads have access to some of
the data structures
♦ E.g., thread 1 can post an Irecv, and thread

2 can wait for its completion – thus the
request queue has to be shared between
both threads

♦ Since multiple threads are accessing this
shared queue, it needs to be locked – adds
a lot of overhead

21

Hybrid Programming:
Correctness Requirements

•  Hybrid programming with MPI+threads
does not do much to reduce the
complexity of thread programming
♦ Your application still has to be a correct

multi-threaded application
♦ On top of that, you also need to make sure

you are correctly following MPI semantics
•  Many commercial debuggers offer

support for debugging hybrid
MPI+threads applications (mostly for
MPI+Pthreads and MPI+OpenMP)

22

Example of The Difficulty of
Thread Programming

•  Ptolemy is a framework for modeling, simulation, and
design of concurrent, real-time, embedded systems

•  Developed at UC Berkeley (PI: Ed Lee)
•  It is a rigorously tested, widely used piece of software
•  Ptolemy II was first released in 2000
•  Yet, on April 26, 2004, four years after it was first

released, the code deadlocked!
•  The bug was lurking for 4 years of widespread use and

testing!
•  A faster machine or something that changed the timing

caught the bug
•  See “The Problem with Threads” by Ed Lee, IEEE

Computer, 2006

23

An Example Encountered
Recently

•  The MPICH group received a bug report
about a very simple multithreaded MPI
program that hangs

•  Run with 2 processes
•  Each process has 2 threads
•  Both threads communicate with threads

on the other process as shown in the
next slide

•  Several hours spent trying to debug
MPICH before discovering that the bug
is actually in the user’s program L

24

2 Proceses, 2 Threads, Each
Thread Executes this Code

for (j = 0; j < 2; j++) {
 if (rank == 1) {
 for (i = 0; i < 2; i++)

 MPI_Send(NULL, 0, MPI_CHAR, 0, 0,MPI_COMM_WORLD);
 for (i = 0; i < 2; i++)

 MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);
 }
 else { /* rank == 0 */
 for (i = 0; i < 2; i++)

 MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
 for (i = 0; i < 2; i++)

 MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
 }
}

25

Intended Ordering of
Operations

• Every send matches a receive on the
other rank

2 recvs (T2)
2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
2 recvs (T1)
2 sends (T1)

Rank 0

2 sends (T2)
2 recvs (T2)
2 sends (T2)
2 recvs (T2)

2 sends (T1)
2 recvs (T1)
2 sends (T1)
2 recvs (T1)

Rank 1

26

Possible Ordering of
Operations in Practice

•  Because the MPI operations can be issued
in an arbitrary order across threads, all
threads could block in a RECV call

1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)

Rank 0

2 sends (T2)
1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)

2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)
2 recvs (T1)

Rank 1

27

Hybrid Programming with
Shared Memory

•  MPI-3 allows different processes to allocate
shared memory through MPI
♦  MPI_Win_allocate_shared

•  Uses many of the concepts of one-sided
communication

•  Applications can do hybrid programming using
MPI or load/store accesses on the shared
memory window

•  Other MPI functions can be used to
synchronize access to shared memory regions

•  Can be simpler to program than threads

28

Creating Shared Memory
Regions in MPI

MPI_COMM_WORLD

MPI_Comm_split_type (COMM_TYPE_SHARED)

Shared memory
communicator

MPI_Win_allocate_shared

Shared memory
window

Shared memory
window

Shared memory
window

Shared memory
communicator

Shared memory
communicator

29

Load/store

Regular RMA windows vs.
Shared memory windows

•  Shared memory windows allow
application processes to directly
perform load/store accesses on all
of the window memory
♦  E.g., x[100] = 10

•  All of the existing RMA functions
can also be used on such memory
for more advanced semantics such
as atomic operations

•  Can be very useful when
processes want to use threads
only to get access to all of the
memory on the node
♦  You can create a shared memory

window and put your shared data

Local	
memory	

P0	

Local	
memory	

P1	

Load/store
PUT/GET

Traditional RMA
windows

Load/store

Local	memory	

P0	 P1	

Load/store

Shared memory
windows

Load/store

30

Memory Allocation And
Placement

•  Shared memory allocation does not need to be uniform
across processes
♦  Processes can allocate a different amount of memory

(even zero)
•  The MPI standard does not specify where the memory

would be placed (e.g., which physical memory it will be
pinned to)
♦  Implementations can choose their own strategies, though

it is expected that an implementation will try to place
shared memory allocated by a process “close to it”

•  The total allocated shared memory on a communicator
is contiguous by default
♦  Users can pass an info hint called “noncontig” that will

allow the MPI implementation to align memory allocations
from each process to appropriate boundaries to assist with
placement

31

Shared Arrays with Shared
Memory Windows

int main(int argc, char ** argv)
{
 int buf[100];

 MPI_Init(&argc, &argv);
 MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);
 MPI_Win_allocate_shared(comm, ..., &win);

 MPI_Comm_rank(comm, &rank);

 MPI_Win_lockall(win);

 /* copy data to local part of shared memory */
 MPI_Win_sync(win); /* or memory flush if available */

 /* use shared memory */

 MPI_Win_unlock_all(win);
 MPI_Win_free(&win);
 MPI_Finalize();

 return 0;
}

32

Summary

• MPI + X a reasonable way to
handle
♦ Extreme parallelism
♦ SMP nodes; other hierarchical

memory architectures
• Many choices for X

♦ OpenMP
♦ pthreads
♦ MPI (using shared memory)

