
Lecture 36: MPI, Hybrid 
Programming, and Shared 

Memory 

William Gropp 
www.cs.illinois.edu/~wgropp  



2 

Thanks to 

• This material based on the SC14 
Tutorial presented by 
♦ Pavan Balaji 
♦ William Gropp 
♦ Torsten Hoefler 
♦ Rajeev Thakur 



3 

MPI and Threads 

•  MPI describes parallelism between processes 
(with separate address spaces) 

•  Thread parallelism provides a shared-memory 
model within a process 

•  OpenMP and Pthreads are common models 
♦  OpenMP provides convenient features for loop-level 

parallelism. Threads are created and managed by 
the compiler, based on user directives. 

♦  Pthreads provide more complex and dynamic 
approaches. Threads are created and managed 
explicitly by the user. 
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Programming for Multicore 

•  Common options for programming 
multicore clusters 
♦ All MPI 

• MPI between processes both within a node and 
across nodes 

• MPI internally uses shared memory to 
communicate within a node 

♦ MPI + OpenMP 
• Use OpenMP within a node and MPI across nodes 

♦ MPI + Pthreads 
• Use Pthreads within a node and MPI across nodes  

•  The latter two approaches are known as 
“hybrid programming” 
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Hybrid Programming with 
MPI+Threads 

•  In MPI-only programming, 
each MPI process has a 
single program counter 

•  In MPI+threads hybrid 
programming, there can be 
multiple threads executing 
simultaneously 
♦  All threads share all MPI 

objects (communicators, 
requests) 

♦  The MPI implementation 
might need to take 
precautions to make sure the 
state of the MPI 
implementation is consistent 

Rank 
0 

Rank 
1 

MPI-only 
Programming 

Rank 
0 

Rank 
1 

MPI+Threads Hybrid 
Programming 
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MPI’s Four Levels of Thread 
Safety 

•  MPI defines four levels of thread safety -- these are 
commitments the application makes to the MPI 
♦  MPI_THREAD_SINGLE: only one thread exists in the application 
♦  MPI_THREAD_FUNNELED: multithreaded, but only the main 

thread makes MPI calls (the one that called MPI_Init_thread) 
♦  MPI_THREAD_SERIALIZED: multithreaded, but only one thread at 

a time makes MPI calls 
♦  MPI_THREAD_MULTIPLE: multithreaded and any thread can make 

MPI calls at any time (with some restrictions to avoid races – see 
next slide) 

•  Thread levels are in increasing order 
♦  If an application works in FUNNELED mode, it can work in 

SERIALIZED 
•  MPI defines an alternative to MPI_Init 

♦  MPI_Init_thread(requested, provided) 
•  Application specifies level it needs; MPI implementation returns level it 

supports 
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MPI_THREAD_SINGLE 

•  There are no threads in the system 
♦ E.g., there are no OpenMP parallel regions 

int main(int argc, char ** argv) 
{ 
    int buf[100]; 
 
    MPI_Init(&argc, &argv); 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 
    for (i = 0; i < 100; i++) 
        compute(buf[i]); 
 
    /* Do MPI stuff */ 
 
  MPI_Finalize(); 

 
    return 0; 
} 
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MPI_THREAD_FUNNELED 
•  All MPI calls are made by the master thread 

♦  Outside the OpenMP parallel regions 
♦  In OpenMP master regions 

int main(int argc, char ** argv) 
{ 
    int buf[100], provided; 
 
    MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided); 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 
#pragma omp parallel for 
    for (i = 0; i < 100; i++) 
        compute(buf[i]); 
 
    /* Do MPI stuff */ 
 
  MPI_Finalize(); 

 
    return 0; 
} 
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MPI_THREAD_SERIALIZED 
•  Only one thread can make MPI calls at a time 

♦  Protected by OpenMP critical regions 
int main(int argc, char ** argv) 
{ 
    int buf[100], provided; 
 
    MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided); 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 
#pragma omp parallel for 
    for (i = 0; i < 100; i++) { 
        compute(buf[i]); 
#pragma omp critical 
        /* Do MPI stuff */ 
    } 
 
  MPI_Finalize(); 

 
    return 0; 
} 
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MPI_THREAD_MULTIPLE 

•  Any thread can make MPI calls any time 
(restrictions apply) 

int main(int argc, char ** argv) 
{ 
    int buf[100], provided; 
 
    MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided); 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 
#pragma omp parallel for 
    for (i = 0; i < 100; i++) { 
        compute(buf[i]); 
        /* Do MPI stuff */ 
    } 
 
  MPI_Finalize(); 

 
    return 0; 
} 
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Threads and MPI 

•  An implementation is not required to support 
levels higher than MPI_THREAD_SINGLE; that 
is, an implementation is not required to be 
thread safe 

•  A fully thread-safe implementation will support 
MPI_THREAD_MULTIPLE 

•  A program that calls MPI_Init (instead of 
MPI_Init_thread) should assume that only 
MPI_THREAD_SINGLE is supported 

•  A threaded MPI program that does not call 
MPI_Init_thread is an incorrect program 
(common user error) 
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Specification of 
MPI_THREAD_MULTIPLE 

•  Ordering: When multiple threads make MPI calls concurrently, the 
outcome will be as if the calls executed sequentially in some (any) 
order 
♦  Ordering is maintained within each thread 
♦  User must ensure that collective operations on the same communicator, 

window, or file handle are correctly ordered among threads 
•  E.g., cannot call a broadcast on one thread and a reduce on another thread on 

the same communicator 

♦  It is the user's responsibility to prevent races when threads in the same 
application post conflicting MPI calls  

•  E.g., accessing an info object from one thread and freeing it from another thread 

•  Blocking: Blocking MPI calls will block only the calling thread and will 
not prevent other threads from running or executing MPI functions 
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Ordering in 
MPI_THREAD_MULTIPLE: Incorrect 

Example with Collectives 

•  P0 and P1 can have different orderings of Bcast 
and Barrier 

•  Here the user must use some kind of 
synchronization to ensure that either thread 1 or 
thread 2 gets scheduled first on both processes  

•  Otherwise a broadcast may get matched with a 
barrier on the same communicator, which is not 
valid in MPI 

Process 0 
 

MPI_Bcast(comm) 
 
 

MPI_Barrier(comm) 

Process 1 
 

MPI_Bcast(comm) 
 
 

MPI_Barrier(comm) 

Thread 1 

Thread 2 
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Ordering in 
MPI_THREAD_MULTIPLE: Incorrect 

Example with RMA 
int main(int argc, char ** argv) 
{ 
    /* Initialize MPI and RMA window */ 
 
#pragma omp parallel for 
    for (i = 0; i < 100; i++) { 
        target = rand(); 
        MPI_Win_lock(MPI_LOCK_EXCLUSIVE, target, 0, win); 
        MPI_Put(..., win); 
        MPI_Win_unlock(target, win); 
    } 
 
    /* Free MPI and RMA window */ 
 
    return 0; 
} 

Different threads can lock the same process causing multiple 
locks to the same target before the first lock is unlocked 
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Ordering in 
MPI_THREAD_MULTIPLE: Incorrect 
Example with Object Management 

• The user has to make sure that one 
thread is not using an object while 
another thread is freeing it 
♦ This is essentially an ordering issue; the 

object might get freed before it is used 

Process 0 
 

MPI_Bcast(comm) 
 
 

MPI_Comm_free(comm) 

Process 1 
 

MPI_Bcast(comm) 
 
 

MPI_Comm_free(comm) 

Thread 1 

Thread 2 
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Blocking Calls in MPI_THREAD_MULTIPLE: 
Correct Example 

•  An implementation must ensure that this 
example never deadlocks for any ordering of 
thread execution 

•  That means the implementation cannot simply 
acquire a thread lock and block within an MPI 
function. It must release the lock to allow other 
threads to make progress. 

Process 0 
 

MPI_Recv(src=1) 
 
 

MPI_Send(dst=1) 
 
 

Process 1 
 

MPI_Recv(src=0) 
 
 

MPI_Send(dst=0) 

 
 

Thread 1 

Thread 2 
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The Current Situation 

•  All MPI implementations support MPI_THREAD_SINGLE 
(duh). 

•  They probably support MPI_THREAD_FUNNELED even if 
they don’t admit it. 
♦  Does require thread-safe malloc 
♦  Probably OK in OpenMP programs 

•  Many (but not all) implementations support 
THREAD_MULTIPLE 
♦  Hard to implement efficiently though (lock granularity 

issue) 
•  “Easy” OpenMP programs (loops parallelized with 

OpenMP, communication in between loops) only need 
FUNNELED 
♦  So don’t need “thread-safe” MPI for many hybrid programs 
♦  But watch out for Amdahl’s Law! 
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Performance with 
MPI_THREAD_MULTIPLE 

•  Thread safety does not come for free 
•  The implementation must protect 

certain data structures or parts of code 
with mutexes or critical sections 

•  To measure the performance impact, 
we ran tests to measure communication 
performance when using multiple 
threads versus multiple processes 
♦  For results, see Thakur/Gropp paper: “Test 

Suite for Evaluating Performance of 
Multithreaded MPI Communication,” Parallel 
Computing, 2009 
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Message Rate Results on BG/P  

Message Rate Benchmark 

“Enabling Concurrent 
Multithreaded MPI 
Communication on Multicore 
Petascale Systems” EuroMPI 
2010 
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Why is it hard to optimize 
MPI_THREAD_MULTIPLE 

•  MPI internally maintains several 
resources 

•  Because of MPI semantics, it is required 
that all threads have access to some of 
the data structures 
♦ E.g., thread 1 can post an Irecv, and thread 

2 can wait for its completion – thus the 
request queue has to be shared between 
both threads 

♦ Since multiple threads are accessing this 
shared queue, it needs to be locked – adds 
a lot of overhead 
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Hybrid Programming: 
Correctness Requirements 

•  Hybrid programming with MPI+threads 
does not do much to reduce the 
complexity of thread programming 
♦ Your application still has to be a correct 

multi-threaded application 
♦ On top of that, you also need to make sure 

you are correctly following MPI semantics 
•  Many commercial debuggers offer 

support for debugging hybrid 
MPI+threads applications (mostly for 
MPI+Pthreads and MPI+OpenMP) 
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Example of The Difficulty of 
Thread Programming 

•  Ptolemy is a framework for modeling, simulation, and 
design of concurrent, real-time, embedded systems  

•  Developed at UC Berkeley (PI: Ed Lee) 
•  It is a rigorously tested, widely used piece of software 
•  Ptolemy II was first released in 2000 
•  Yet, on April 26, 2004, four years after it was first 

released, the code deadlocked! 
•  The bug was lurking for 4 years of widespread use and 

testing! 
•  A faster machine or something that changed the timing 

caught the bug 
•  See “The Problem with Threads” by Ed Lee, IEEE 

Computer, 2006 
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An Example Encountered 
Recently 

•  The MPICH group received a bug report 
about a very simple multithreaded MPI 
program that hangs 

•  Run with 2 processes 
•  Each process has 2 threads 
•  Both threads communicate with threads 

on the other process as shown in the 
next slide 

•  Several hours spent trying to debug 
MPICH before discovering that the bug 
is actually in the user’s program L 
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2 Proceses, 2 Threads, Each 
Thread Executes this Code 

for (j = 0; j < 2; j++) { 
     if (rank == 1) { 
         for (i = 0; i < 2; i++) 

  MPI_Send(NULL, 0, MPI_CHAR, 0, 0,MPI_COMM_WORLD); 
         for (i = 0; i < 2; i++) 

  MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat); 
     } 
    else {  /* rank == 0 */ 
         for (i = 0; i < 2; i++) 

  MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat); 
         for (i = 0; i < 2; i++) 

  MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD); 
     } 
} 
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Intended Ordering of 
Operations 

• Every send matches a receive on the 
other rank 

2 recvs (T2) 
2 sends (T2) 
2 recvs (T2) 
2 sends (T2) 

2 recvs (T1) 
2 sends (T1) 
2 recvs (T1) 
2 sends (T1) 

Rank 0 

2 sends (T2) 
2 recvs (T2) 
2 sends (T2) 
2 recvs (T2) 

2 sends (T1) 
2 recvs (T1) 
2 sends (T1) 
2 recvs (T1) 

Rank 1 
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Possible Ordering of 
Operations in Practice 

•  Because the MPI operations can be issued 
in an arbitrary order across threads, all 
threads could block in a RECV call 

1 recv (T2) 
 
1 recv (T2) 
 
2 sends (T2) 
2 recvs (T2) 
2 sends (T2) 

2 recvs (T1) 
2 sends (T1) 
1 recv (T1) 
 
 
1 recv (T1) 
 
2 sends (T1) 

Rank 0 

2 sends (T2) 
1 recv (T2) 
 
1 recv (T2) 
 
2 sends (T2) 
2 recvs (T2) 

2 sends (T1) 
1 recv (T1) 
 
 
 
1 recv (T1) 
 
2 sends (T1) 
2 recvs (T1) 

Rank 1 
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Hybrid Programming with 
Shared Memory 

•  MPI-3 allows different processes to allocate 
shared memory through MPI 
♦  MPI_Win_allocate_shared 

•  Uses many of the concepts of one-sided 
communication 

•  Applications can do hybrid programming using 
MPI or load/store accesses on the shared 
memory window 

•  Other MPI functions can be used to 
synchronize access to shared memory regions 

•  Can be simpler to program than threads 
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Creating Shared Memory 
Regions in MPI 

MPI_COMM_WORLD 

MPI_Comm_split_type    (COMM_TYPE_SHARED) 

Shared memory 
communicator 

MPI_Win_allocate_shared 

Shared memory 
window 

Shared memory 
window 

Shared memory 
window 

Shared memory 
communicator 

Shared memory 
communicator 
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Load/store 

Regular RMA windows vs. 
Shared memory windows 

•  Shared memory windows allow 
application processes to directly 
perform load/store accesses on all 
of the window memory 
♦  E.g., x[100] = 10 

•  All of the existing RMA functions 
can also be used on such memory 
for more advanced semantics such 
as atomic operations 

•  Can be very useful when 
processes want to use threads 
only to get access to all of the 
memory on the node 
♦  You can create a shared memory 

window and put your shared data 

Local	
memory	

P0	

Local	
memory	

P1	

Load/store 
PUT/GET 

Traditional RMA 
windows 

Load/store 

Local	memory	

P0	 P1	

Load/store 

Shared memory 
windows 

Load/store 
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Memory Allocation And 
Placement 

•  Shared memory allocation does not need to be uniform 
across processes 
♦  Processes can allocate a different amount of memory 

(even zero) 
•  The MPI standard does not specify where the memory 

would be placed (e.g., which physical memory it will be 
pinned to) 
♦  Implementations can choose their own strategies, though 

it is expected that an implementation will try to place 
shared memory allocated by a process “close to it” 

•  The total allocated shared memory on a communicator 
is contiguous by default 
♦  Users can pass an info hint called “noncontig” that will 

allow the MPI implementation to align memory allocations 
from each process to appropriate boundaries to assist with 
placement 
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Shared Arrays with Shared 
Memory Windows 

int main(int argc, char ** argv) 
{ 
    int buf[100]; 
 
    MPI_Init(&argc, &argv); 
    MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm); 
    MPI_Win_allocate_shared(comm, ..., &win); 
 
    MPI_Comm_rank(comm, &rank); 
 
    MPI_Win_lockall(win); 
 
    /* copy data to local part of shared memory */ 
    MPI_Win_sync(win); /* or memory flush if available */ 
 
    /* use shared memory */ 
 
    MPI_Win_unlock_all(win); 
    MPI_Win_free(&win); 
  MPI_Finalize(); 

    return 0; 
} 
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Summary 

• MPI + X a reasonable way to 
handle 
♦ Extreme parallelism 
♦ SMP nodes; other hierarchical 

memory architectures 
• Many choices for X 

♦ OpenMP 
♦ pthreads 
♦ MPI (using shared memory) 


