
Lecture 25: Strategies for
Parallelism and Halo

Exchange
William Gropp

www.cs.illinois.edu/~wgropp

2

What are some ways to think
about parallel programming?
• At least two easy ways:

♦ Coarse grained - Divide the problem
into big tasks, run many at the same
time, coordinate when necessary.
Sometimes called “Task Parallelism”

♦ Fine grained - For each “operation”,
divide across functional units such as
floating point units. Sometimes
called “Data Parallelism”

3

Example – Coarse Grained

• Set students on different problems
in a related research area
♦ Or mail lots of letters – give several

people the lists, have them do
everything

♦ Common tools include threads, fork,
TBB

4

Example – Fine Grained

• Send out lists of letters
♦ break into steps, make everyone

write letter text, then stuff envelope,
then write address, then apply stamp.
Then collect and mail.

♦ Common tools include OpenMP,
autoparallelization or vectorization

• Both coarse and fine grained
approaches are relatively easy to
think about

5

Example:
Computation on a Mesh

•  Each circle is a mesh point
•  Difference equation

evaluated at each point
involves the four neighbors

•  The red “plus” is called the
method’s stencil

•  Good numerical algorithms
form a matrix equation
Au=f; solving this requires
computing Bv, where B is a
matrix derived from A.
These evaluations involve
computations with the
neighbors on the mesh.

6

Example:
Computation on a Mesh

•  Each circle is a mesh point
•  Difference equation

evaluated at each point
involves the four neighbors

•  The red “plus” is called the
method’s stencil

•  Good numerical algorithms
form a matrix equation
Au=f; solving this requires
computing Bv, where B is a
matrix derived from A.
These evaluations involve
computations with the
neighbors on the mesh.

•  Decompose mesh into
equal sized (work) pieces

7

Necessary Data Transfers

8

Necessary Data Transfers

9

Necessary Data Transfers
•  Provide access to remote data through a

halo exchange

10

PseudoCode

•  Iterate until done:
♦ Exchange “Halo” data

• MPI_Isend/MPI_Irecv/MPI_Waitall or
MPI_Alltoallv or MPI_Neighbor_alltoall or
MPI_Put/MPI_Win_fence or …

♦ Perform stencil computation on local
memory
• Can use SMP/thread/vector parallelism

for stencil computation – E.g., OpenMP
loop parallelism

11

Choosing MPI Alternatives

•  MPI offers may ways to accomplish the same task
•  Which is best?

♦  Just like everything else, it depends on the vendor,
system architecture

♦  Like C and Fortran, MPI provides the programmer with
the tools to achieve high performance without sacrificing
portability

•  The best choice depends on the use:
♦  Consider choices based on system and MPI

implementation
♦  Example: Experiments with a Jacobi relaxation example

12

Tuning for MPI’s Send/
Receive Protocols

•  Aggressive Eager
♦  Performance problem: extra copies
♦  Possible deadlock for inadequate eager buffering
♦  Ensure that receives are posted before sends
♦  MPI_Issend can be used to express “wait until

receive is posted”
•  Rendezvous with sender push

♦  Extra latency
♦  Possible delays while waiting for sender to begin

•  Rendezvous with receiver pull
♦  Possible delays while waiting for receiver to begin

13

Rendezvous Blocking

•  What happens once sender and receiver
rendezvous?
♦  Sender (push) or receiver (pull) may complete

operation
♦  May block other operations while completing

•  Performance tradeoff
♦  If operation does not block (by checking for other

requests), it adds latency or reduces bandwidth.
•  Can reduce performance if a receiver, having

acknowledged a send, must wait for the
sender to complete a separate operation that
it has started.

14

Tuning for Rendezvous with
Sender Push

•  Ensure receives posted before sends
♦ better, ensure receives match sends before

computation starts; may be better to do
sends before receives

•  Ensure that sends have time to start
transfers

•  Can use short control messages
•  Beware of the cost of extra messages

♦  Intel i860 encouraged use of control
messages with ready send (force type)

15

Tuning for Rendezvous with
Receiver Pull

• Place MPI_Isends before receives
• Use short control messages to

ensure matches
• Beware of the cost of extra

messages

16

Experiments with MPI
Implementations

• Multiparty data exchange
•  Jacobi iteration in 2 dimensions

♦ Model for PDEs, Sparse matrix-vector
products, and algorithms with
surface/volume behavior

♦ Issues are similar to unstructured
grid problems (but harder to
illustrate)

17

Jacobi Iteration
(C Ordering)

• Simple parallel data structure

• Processes exchange rows with
neighbors

18

Jacobi Iteration
(Fortran Ordering)

• Simple parallel data structure

•  Processes exchange columns with neighbors
•  Local part declared as xlocal(m,0:n+1)

Process 0 Process 1 Process 2 Process 3

Boundary Point

Interior Node

19

Background to Tests

• Goals
♦ Identify better performing idioms for

the same communication operation
♦ Understand these by understanding

the underlying MPI process
♦ Provide a starting point for evaluating

additional options (there are many
ways to write even simple codes)

20

Some Send/Receive
Approaches

•  Based on operation hypothesis. Most of these
are for polling mode. Each of the following is
a hypothesis that the experiments test
♦  Better to start receives first
♦  Ensure recvs posted before sends
♦  Ordered (no overlap)
♦  Nonblocking operations, overlap effective
♦  Use of Ssend, Rsend versions (EPCC/T3D can prefer

Ssend over Send; uses Send for buffered send)
♦  Manually advance automaton

•  Persistent operations

21

Scheduling Communications

•  Is it better to use MPI_Waitall or to
schedule/order the requests?
♦ Does the implementation complete a Waitall

in any order or does it prefer requests as
ordered in the array of requests?

•  In principle, it should always be best to
let MPI schedule the operations. In
practice, it may be better to order
either the short or long messages first,
depending on how data is transferred.

22

Send and Recv (C)

•  Simplest use of send and recv

{
 MPI_Status status;
 MPI_Comm ring_comm = mesh->ring_comm;

 /* Send up, then receive from below */
 MPI_Send(xlocal + maxm * lrow, maxm, MPI_DOUBLE, up_nbr, 0,

 ring_comm);
 MPI_Recv(xlocal, maxm, MPI_DOUBLE, down_nbr, 0, ring_comm, &status);
 /* Send down, then receive from above */
 MPI_Send(xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1, ring_comm);
 MPI_Recv(xlocal + maxm * (lrow + 1), maxm, MPI_DOUBLE, up_nbr, 1,

 ring_comm, &status);
}

23

Send and Recv (Fortran)

•  Simplest use of send and recv
integer status(MPI_STATUS_SIZE)

call MPI_Send(xlocal(1,1), m, MPI_DOUBLE_PRECISION, &
 left_nbr, 0, ring_comm, ierr)
call MPI_Recv(xlocal(1,0), m, MPI_DOUBLE_PRECISION, &
 right_nbr, 0, ring_comm, status, ierr)
call MPI_Send(xlocal(1,n), m, MPI_DOUBLE_PRECISION, &
 right_nbr, 0, ring_comm, ierr)
call MPI_Recv(xlocal(1,n+1), m, MPI_DOUBLE_PRECISION, &
 left_nbr, 0, ring_comm, status, ierr)

24

Performance of Simplest
Code

• Often very poor performance
♦ Rendezvous sequentializes
sends/receives

25

Better to start receives first
(C)

•  Irecv, Isend, Waitall - ok performance
MPI_Status statuses[4];
MPI_Comm ring_comm;
MPI_Request r[4];

 /* Send up, then receive from below */
 MPI_Irecv(xlocal, maxm, MPI_DOUBLE, down_nbr, 0, ring_comm, &r[1]);
 MPI_Irecv(xlocal + maxm * (lrow + 1), maxm, MPI_DOUBLE, up_nbr, 1,

 ring_comm, &r[3]);
 MPI_Isend(xlocal + maxm * lrow, maxm, MPI_DOUBLE, up_nbr, 0,

 ring_comm, &r[0]);
 /* Send down, then receive from above */
 MPI_Isend(xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1, ring_comm,

 &r[2]);
 MPI_Waitall(4, r, statuses);
}

26

Better to start receives first
(Fortran)

•  Irecv, Isend, Waitall - ok performance
integer statuses(MPI_STATUS_SIZE,4), requests(4)

call MPI_Irecv(xlocal(1,0), m, MPI_DOUBLE_PRECISION,&
 left_nbr, ring_comm, requests(2), ierr)
call MPI_Irecv(xlocal(1,n+1), m, MPI_DOUBLE_PRECISION,&
 right_nbr, ring_comm, requests(4), ierr)
call MPI_Isend(xlocal(1,n), m, MPI_DOUBLE_PRECISION, &
 right_nbr, ring_comm, requests(1), ierr)
call MPI_Isend(xlocal(1,1), m, MPI_DOUBLE_PRECISION, &
 left_nbr, ring_comm, requests(3), ierr)
call MPI_Waitall(4, requests, statuses, ierr)

27

Ensure recvs posted before
sends (C)

•  Irecv, Sendrecv/Barrier, Rsend, Waitall
void ExchangeInit(mesh)
Mesh *mesh;
{
 MPI_Irecv(xlocal, maxm, MPI_DOUBLE, down_nbr, 0, ring_comm,

 &mesh->rq[0]);
 MPI_Irecv(xlocal + maxm * (lrow + 1), maxm, MPI_DOUBLE, up_nbr, 1,

 ring_comm, &mesh->rq[1]);
}

void Exchange(mesh)
Mesh *mesh;
{
 MPI_Status statuses[2];

 /* Send up and down, then receive */
 MPI_Rsend(xlocal + maxm * lrow, maxm, MPI_DOUBLE, up_nbr, 0,

 ring_comm);
 MPI_Rsend(xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1, ring_comm);

 MPI_Waitall(2, mesh->rq, statuses);
}

void ExchangeEnd(mesh)
Mesh *mesh;
{
 MPI_Cancel(&mesh->rq[0]);
 MPI_Cancel(&mesh->rq[1]);
}

28

Ensure recvs posted before
sends (Fortran)

•  Irecv, Sendrecv/Barrier, Rsend, Waitall
integer statuses(MPI_STATUS_SIZE,2), requests(2)
! Post initial Irecv’s (not shown)
do while (.not. Converged)
 ….
 call MPI_Rsend(xlocal(1,n), m, MPI_DOUBLE_PRECISION, &
 right_nbr, ring_comm, ierr)
 call MPI_Rsend(xlocal(1,1), m, MPI_DOUBLE_PRECISION, &
 left_nbr, ring_comm, ierr)
 call MPI_Waitall(2, requests, statuses, ierr)
 ! Process ghost points
 call MPI_Irecv(xlocal(1,0), m, MPI_DOUBLE_PRECISION,&
 left_nbr, ring_comm, requests(1), ierr)
 call MPI_Irecv(xlocal(1,n+1), m, MPI_DOUBLE_PRECISION,&
 right_nbr, ring_comm, requests(2), ierr)
 call MPI_Allreduce(…)
enddo

29

Use of Ssend versions (C)

•  Ssend allows send to wait until receive
ready
♦ At least one (ancient) implementation (T3D)

gives better performance for Ssend than for
Send

void Exchange(mesh)
Mesh *mesh;
{
 MPI_Status status;

 /* Send up, then receive from below */
 MPI_Irecv(xlocal, maxm, MPI_DOUBLE, down_nbr, 0, ring_comm, &rq);
 MPI_Ssend(xlocal + maxm * lrow, maxm, MPI_DOUBLE, up_nbr, 0,

 ring_comm);
 MPI_Wait(&rq, &status);
 /* Send down, then receive from above */
 MPI_Irecv(xlocal + maxm * (lrow + 1), maxm, MPI_DOUBLE, up_nbr, 1,

 ring_comm, &rq);
 MPI_Ssend(xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1, ring_comm);
 MPI_Wait(&rq, &status);
}

30

Use of Ssend versions
(Fortran)

•  Ssend allows send to wait until receive ready
♦  At least one (ancient) implementation (T3D) gives better

performance for Ssend than for Send
•  integer status(MPI_STATUS_SIZE), request

call MPI_Irecv(xlocal(1,0), m, MPI_DOUBLE_PRECISION, left_nbr, 0,&
 ring_comm, request, ierr)
call MPI_Ssend(xlocal(1,n), m, MPI_DOUBLE_PRECISION, right_nbr, &
 0, ring_comm, ierr)
call MPI_Wait(request, status, ierr)
call MPI_Irecv(xlocal(1,n+1), m, MPI_DOUBLE_PRECISION, &
 right_nbr, 0, ring_comm, request, ierr)
call MPI_Ssend(xlocal(1,1), m, MPI_DOUBLE_PRECISION, left_nbr, &
 0, ring_comm, ierr)
call MPI_Wait(request, status, ierr)

31

Nonblocking Operations,
Overlap Effective (C)

•  Isend, Irecv, Waitall
•  A variant uses Waitsome with computation

void ExchangeStart(mesh)
Mesh *mesh;
{
 /* Send up, then receive from below */
 MPI_Irecv(xlocal, maxm, MPI_DOUBLE, down_nbr, 0, ring_comm,

 &mesh->rq[0]);
 MPI_Irecv(xlocal + maxm * (lrow + 1), maxm, MPI_DOUBLE, up_nbr, 1,

 ring_comm, &mesh->rq[1]);
 MPI_Isend(xlocal + maxm * lrow, maxm, MPI_DOUBLE, up_nbr, 0,

 ring_comm, &mesh->rq[2]);
 MPI_Isend(xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1, ring_comm,

 &mesh->rq[3]);
}

void ExchangeEnd(mesh)
Mesh *mesh;
{
 MPI_Status statuses[4];
 MPI_Waitall(4, mesh->rq, statuses);
}

32

Nonblocking Operations,
Overlap Effective (Fortran)

•  Isend, Irecv, Waitall
•  A variant uses Waitsome with computation

integer statuses(MPI_STATUS_SIZE,4), requests(4)
call MPI_Irecv(xlocal(1,0), m, MPI_DOUBLE_PRECISION, left_nbr, 0,&
 ring_comm, requests(1), ierr)
call MPI_Isend(xlocal(1,n), m, MPI_DOUBLE_PRECISION, right_nbr, &
 0, ring_comm, requests(2), ierr)
call MPI_Irecv(xlocal(1,n+1), m, MPI_DOUBLE_PRECISION, &
 right_nbr, 0, ring_comm, requests(3), ierr)
call MPI_Isend(xlocal(1,1), m, MPI_DOUBLE_PRECISION, left_nbr, &
 0, ring_comm, requests(4), ierr)
… computation ...
call MPI_Waitall(4, requests, statuses, ierr)

33

How Important is Using
Nonblocking Communication?

34

And For Blue Waters: Using
Isend/Irecv

• Halo exchange performance lower
than ping-pong, but it could be
worse …

0.00
1000.00
2000.00
3000.00
4000.00
5000.00
6000.00
7000.00
8000.00
9000.00

Tr
an

sf
er

 R
at

e

(M

B
/s

)

total send and receive data size (byte)

Transfer Rate for Each MPI and related ponping test
1

2

4

8

16

pp - same
chip
pp same die

pp diff. die

pp diff. node

35

Blue Waters:
Using Send/Irecv

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Tr
an

sf
er

 R
at

e

(M

B
/s

)

total send and receive data size (byte)

Transfer Rate for Each MPI and related ponping test
1

2

4

8

16

pp - same
chip
pp same die

pp diff. die

pp diff. node

36

Persistent Operations

•  Potential saving
♦  Allocation of MPI_Request
♦  Validating and storing arguments
♦  Fewer interactions with “polling” engine

•  Variations of example
♦  sendinit, recvinit, startall, waitall
♦  startall(recvs), sendrecv/barrier, startall(rsends),

waitall
•  Some vendor implementations are buggy
•  Persistent operations may be slightly slower

♦  if vendor optimizes for non-persistent operations

37

Summary

• Many different ways to express the
same communication pattern in
MPI
♦ This is a feature, not a flaw

• Different systems will optimize
different patterns
♦ Try to design application code to

allow different implementations
♦ Here, used “Exchange” routine

38

Overdecomposition

•  We’ve used a decomposition that assigns
exactly one “patch” to an MPI process

•  Any load imbalance between processes will
result in idle (wasted) time on all but the
slowest process.

•  One option is to subdivide each patch into
smaller patches, and redistribute patches from
slower processes to faster ones.

•  This approach is called overdecomposition
because it decomposes the original domain
into more parts than is required for distributed
memory parallelism to the individual MPI
processes

39

Discussion

• Try the different MPI
communication approaches on
your system. How do they
perform?

• Does the performance depend on
whether the MPI processes are on
the same chip? Node?

