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What are some ways to think 
about parallel programming? 
• At least two easy ways: 

♦ Coarse grained - Divide the problem 
into big tasks, run many at the same 
time, coordinate when necessary.  
Sometimes called “Task Parallelism” 

♦ Fine grained - For each “operation”, 
divide across functional units such as 
floating point units.  Sometimes 
called “Data Parallelism” 
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Example – Coarse Grained 

• Set students on different problems 
in a related research area 
♦ Or mail lots of letters – give several 

people the lists, have them do 
everything 

♦ Common tools include threads, fork, 
TBB 



4 

Example – Fine Grained 

• Send out lists of letters 
♦ break into steps, make everyone 

write letter text, then stuff envelope, 
then write address, then apply stamp.  
Then collect and mail. 

♦ Common tools include OpenMP, 
autoparallelization or vectorization 

• Both coarse and fine grained 
approaches are relatively easy to 
think about 
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Example:  
Computation on a Mesh 

•  Each circle is a mesh point 
•  Difference equation 

evaluated at each point 
involves the four neighbors 

•  The red “plus” is called the 
method’s stencil 

•  Good numerical algorithms 
form a matrix equation 
Au=f; solving this requires 
computing Bv, where B is a 
matrix derived from A. 
These evaluations involve 
computations with the 
neighbors on the mesh. 
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Example:  
Computation on a Mesh 

•  Each circle is a mesh point 
•  Difference equation 

evaluated at each point 
involves the four neighbors 

•  The red “plus” is called the 
method’s stencil 

•  Good numerical algorithms 
form a matrix equation 
Au=f; solving this requires 
computing Bv, where B is a 
matrix derived from A. 
These evaluations involve 
computations with the 
neighbors on the mesh. 

•  Decompose mesh into 
equal sized (work) pieces 
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Necessary Data Transfers 
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Necessary Data Transfers 



9 

Necessary Data Transfers 
•  Provide access to remote data through a 

halo exchange 
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PseudoCode 

•  Iterate until done: 
♦ Exchange “Halo” data 

• MPI_Isend/MPI_Irecv/MPI_Waitall or 
MPI_Alltoallv or MPI_Neighbor_alltoall or 
MPI_Put/MPI_Win_fence or … 

♦ Perform stencil computation on local 
memory 
• Can use SMP/thread/vector parallelism 

for stencil computation – E.g., OpenMP 
loop parallelism 
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Choosing MPI Alternatives 

•  MPI offers may ways to accomplish the same task 
•  Which is best? 

♦  Just like everything else, it depends on the vendor, 
system architecture 

♦  Like C and Fortran, MPI provides the programmer with 
the tools to achieve high performance without sacrificing 
portability 

•  The best choice depends on the use: 
♦  Consider choices based on system and MPI 

implementation 
♦  Example: Experiments with a Jacobi relaxation example 
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Tuning for MPI’s Send/
Receive Protocols 

•  Aggressive Eager 
♦  Performance problem: extra copies 
♦  Possible deadlock for inadequate eager buffering 
♦  Ensure that receives are posted before sends 
♦  MPI_Issend can be used to express “wait until 

receive is posted” 
•  Rendezvous with sender push 

♦  Extra latency 
♦  Possible delays while waiting for sender to begin 

•  Rendezvous with receiver pull 
♦  Possible delays while waiting for receiver to begin 
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Rendezvous Blocking 

•  What happens once sender and receiver 
rendezvous? 
♦  Sender (push) or receiver (pull) may complete 

operation 
♦  May block other operations while completing 

•  Performance tradeoff 
♦  If operation does not block (by checking for other 

requests), it adds latency or reduces bandwidth. 
•  Can reduce performance if a receiver, having 

acknowledged a send, must wait for the 
sender to complete a separate operation that 
it has started. 
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Tuning for Rendezvous with 
Sender Push 

•  Ensure receives posted before sends 
♦ better, ensure receives match sends before 

computation starts; may be better to do 
sends before receives 

•  Ensure that sends have time to start 
transfers 

•  Can use short control messages 
•  Beware of the cost of extra messages 

♦  Intel i860 encouraged use of control 
messages with ready send (force type) 
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Tuning for Rendezvous with 
Receiver Pull 

• Place MPI_Isends before receives 
• Use short control messages to 

ensure matches 
• Beware of the cost of extra 

messages 
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Experiments with MPI 
Implementations 

• Multiparty data exchange 
•  Jacobi iteration in 2 dimensions 

♦ Model for PDEs, Sparse matrix-vector 
products, and algorithms with 
surface/volume behavior 

♦ Issues are similar to unstructured 
grid problems (but harder to 
illustrate) 
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Jacobi Iteration 
(C Ordering) 

• Simple parallel data structure 

• Processes exchange rows with 
neighbors 
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Jacobi Iteration 
(Fortran Ordering) 

• Simple parallel data structure 

•  Processes exchange columns with neighbors 
•  Local part declared as xlocal(m,0:n+1) 

Process 0 Process 1 Process 2 Process 3 

Boundary Point 

Interior Node 
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Background to Tests 

• Goals 
♦ Identify better performing idioms for 

the same communication operation 
♦ Understand these by understanding 

the underlying MPI process 
♦ Provide a starting point for evaluating 

additional options (there are many 
ways to write even simple codes) 
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Some Send/Receive 
Approaches 

•  Based on operation hypothesis.  Most of these 
are for polling mode.  Each of the following is 
a hypothesis that the experiments test  
♦  Better to start receives first 
♦  Ensure recvs posted before sends 
♦  Ordered (no overlap) 
♦  Nonblocking operations, overlap effective 
♦  Use of Ssend, Rsend versions (EPCC/T3D can prefer 

Ssend over Send; uses Send for buffered send) 
♦  Manually advance automaton 

•  Persistent operations 
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Scheduling Communications 

•  Is it better to use MPI_Waitall or to 
schedule/order the requests? 
♦ Does the implementation complete a Waitall 

in any order or does it prefer requests as 
ordered in the array of requests? 

•  In principle, it should always be best to 
let MPI schedule the operations.  In 
practice, it may be better to order 
either the short or long messages first, 
depending on how data is transferred. 
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Send and Recv (C) 

•  Simplest use of send and recv 

{
    MPI_Status status;
    MPI_Comm ring_comm = mesh->ring_comm;

    /* Send up, then receive from below */
    MPI_Send( xlocal + maxm * lrow, maxm, MPI_DOUBLE, up_nbr, 0,

      ring_comm );
    MPI_Recv( xlocal, maxm, MPI_DOUBLE, down_nbr, 0, ring_comm, &status );
    /* Send down, then receive from above */
    MPI_Send( xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1, ring_comm );
    MPI_Recv( xlocal + maxm * (lrow + 1), maxm, MPI_DOUBLE, up_nbr, 1,

      ring_comm, &status );
}
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Send and Recv (Fortran) 

•  Simplest use of send and recv 
integer status(MPI_STATUS_SIZE) 
 
call MPI_Send( xlocal(1,1), m, MPI_DOUBLE_PRECISION, & 
                          left_nbr, 0, ring_comm, ierr ) 
call MPI_Recv( xlocal(1,0), m, MPI_DOUBLE_PRECISION, & 
                          right_nbr, 0, ring_comm, status, ierr ) 
call MPI_Send( xlocal(1,n), m, MPI_DOUBLE_PRECISION, & 
                          right_nbr, 0, ring_comm, ierr ) 
call MPI_Recv( xlocal(1,n+1), m, MPI_DOUBLE_PRECISION, & 
                           left_nbr, 0, ring_comm, status, ierr ) 
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Performance of Simplest 
Code 

• Often very poor performance 
♦ Rendezvous sequentializes 
sends/receives 



25 

Better to start receives first 
(C) 

•  Irecv, Isend, Waitall - ok performance 
MPI_Status statuses[4];
MPI_Comm ring_comm;
MPI_Request r[4];

    /* Send up, then receive from below */
    MPI_Irecv( xlocal, maxm, MPI_DOUBLE, down_nbr, 0, ring_comm, &r[1] );
    MPI_Irecv( xlocal + maxm * (lrow + 1), maxm, MPI_DOUBLE, up_nbr, 1,

      ring_comm, &r[3] );
    MPI_Isend( xlocal + maxm * lrow, maxm, MPI_DOUBLE, up_nbr, 0,

      ring_comm, &r[0] );
    /* Send down, then receive from above */
    MPI_Isend( xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1, ring_comm,

       &r[2] );
    MPI_Waitall( 4, r, statuses );
}
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Better to start receives first 
(Fortran) 

•  Irecv, Isend, Waitall - ok performance 
integer statuses(MPI_STATUS_SIZE,4), requests(4) 
 
call MPI_Irecv( xlocal(1,0), m, MPI_DOUBLE_PRECISION,& 
                           left_nbr, ring_comm, requests(2), ierr ) 
call MPI_Irecv( xlocal(1,n+1), m, MPI_DOUBLE_PRECISION,& 
                           right_nbr, ring_comm, requests(4), ierr ) 
call MPI_Isend( xlocal(1,n), m, MPI_DOUBLE_PRECISION, & 
                           right_nbr, ring_comm, requests(1), ierr ) 
call MPI_Isend( xlocal(1,1), m, MPI_DOUBLE_PRECISION, & 
                           left_nbr, ring_comm, requests(3), ierr ) 
call MPI_Waitall( 4, requests, statuses, ierr ) 
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Ensure recvs posted before 
sends (C) 

•  Irecv, Sendrecv/Barrier, Rsend, Waitall 
void ExchangeInit( mesh )
Mesh *mesh;
{
    MPI_Irecv( xlocal, maxm, MPI_DOUBLE, down_nbr, 0, ring_comm,

       &mesh->rq[0] );
    MPI_Irecv( xlocal + maxm * (lrow + 1), maxm, MPI_DOUBLE, up_nbr, 1,

      ring_comm, &mesh->rq[1] );
}

void Exchange( mesh )
Mesh *mesh;
{
    MPI_Status statuses[2];

    /* Send up and down, then receive */
    MPI_Rsend( xlocal + maxm * lrow, maxm, MPI_DOUBLE, up_nbr, 0,

       ring_comm );
    MPI_Rsend( xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1, ring_comm );

    MPI_Waitall( 2, mesh->rq, statuses );
}

void ExchangeEnd( mesh )
Mesh *mesh;
{
    MPI_Cancel( &mesh->rq[0] );
    MPI_Cancel( &mesh->rq[1] );
}
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Ensure recvs posted before 
sends (Fortran) 

•  Irecv, Sendrecv/Barrier, Rsend, Waitall 
integer statuses(MPI_STATUS_SIZE,2), requests(2) 
! Post initial Irecv’s (not shown) 
do while (.not. Converged)  
   …. 
   call MPI_Rsend( xlocal(1,n), m, MPI_DOUBLE_PRECISION, & 
                           right_nbr, ring_comm, ierr ) 
   call MPI_Rsend( xlocal(1,1), m, MPI_DOUBLE_PRECISION, & 
                           left_nbr, ring_comm, ierr ) 
   call MPI_Waitall( 2, requests, statuses, ierr ) 
   ! Process ghost points 
   call MPI_Irecv( xlocal(1,0), m, MPI_DOUBLE_PRECISION,& 
                           left_nbr, ring_comm, requests(1), ierr ) 
   call MPI_Irecv( xlocal(1,n+1), m, MPI_DOUBLE_PRECISION,& 
                           right_nbr, ring_comm, requests(2), ierr ) 
   call MPI_Allreduce( … ) 
enddo 
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Use of Ssend versions (C) 

•  Ssend allows send to wait until receive 
ready 
♦ At least one (ancient) implementation (T3D) 

gives better performance for Ssend than for 
Send 

void Exchange( mesh )
Mesh *mesh;
{
    MPI_Status  status;

    /* Send up, then receive from below */
    MPI_Irecv( xlocal, maxm, MPI_DOUBLE, down_nbr, 0, ring_comm, &rq );
    MPI_Ssend( xlocal + maxm * lrow, maxm, MPI_DOUBLE, up_nbr, 0,

      ring_comm );
    MPI_Wait( &rq, &status );
    /* Send down, then receive from above */
    MPI_Irecv( xlocal + maxm * (lrow + 1), maxm, MPI_DOUBLE, up_nbr, 1,

      ring_comm, &rq );
    MPI_Ssend( xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1, ring_comm );
    MPI_Wait( &rq, &status );
}
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Use of Ssend versions 
(Fortran) 

•  Ssend allows send to wait until receive ready 
♦  At least one (ancient) implementation (T3D) gives better 

performance for Ssend than for Send 
•  integer status(MPI_STATUS_SIZE), request 

call MPI_Irecv( xlocal(1,0), m, MPI_DOUBLE_PRECISION, left_nbr, 0,& 
                           ring_comm, request, ierr ) 
call MPI_Ssend( xlocal(1,n), m, MPI_DOUBLE_PRECISION, right_nbr, & 
                            0, ring_comm, ierr ) 
call MPI_Wait( request, status, ierr ) 
call MPI_Irecv( xlocal(1,n+1), m, MPI_DOUBLE_PRECISION, & 
                          right_nbr, 0, ring_comm, request, ierr ) 
call MPI_Ssend( xlocal(1,1), m, MPI_DOUBLE_PRECISION, left_nbr, & 
                            0, ring_comm, ierr) 
call MPI_Wait( request, status, ierr ) 
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Nonblocking Operations, 
Overlap Effective (C) 

•  Isend, Irecv, Waitall 
•  A variant uses Waitsome with computation 

void ExchangeStart( mesh )
Mesh *mesh;
{
     /* Send up, then receive from below */
    MPI_Irecv( xlocal, maxm, MPI_DOUBLE, down_nbr, 0, ring_comm,

       &mesh->rq[0] );
    MPI_Irecv( xlocal + maxm * (lrow + 1), maxm, MPI_DOUBLE, up_nbr, 1,

      ring_comm, &mesh->rq[1] );
    MPI_Isend( xlocal + maxm * lrow, maxm, MPI_DOUBLE, up_nbr, 0,

       ring_comm, &mesh->rq[2] );
    MPI_Isend( xlocal + maxm, maxm, MPI_DOUBLE, down_nbr, 1, ring_comm,

       &mesh->rq[3] );
}

void ExchangeEnd( mesh )
Mesh *mesh;
{
    MPI_Status statuses[4];
    MPI_Waitall( 4, mesh->rq, statuses );
}
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Nonblocking Operations, 
Overlap Effective (Fortran) 

•  Isend, Irecv, Waitall 
•  A variant uses Waitsome with computation 

integer statuses(MPI_STATUS_SIZE,4), requests(4) 
call MPI_Irecv( xlocal(1,0), m, MPI_DOUBLE_PRECISION, left_nbr, 0,& 
                           ring_comm, requests(1), ierr ) 
call MPI_Isend( xlocal(1,n), m, MPI_DOUBLE_PRECISION, right_nbr, & 
                            0, ring_comm, requests(2), ierr ) 
call MPI_Irecv( xlocal(1,n+1), m, MPI_DOUBLE_PRECISION, & 
                          right_nbr, 0, ring_comm, requests(3), ierr ) 
call MPI_Isend( xlocal(1,1), m, MPI_DOUBLE_PRECISION, left_nbr, & 
                            0, ring_comm, requests(4), ierr) 
… computation ... 
call MPI_Waitall( 4, requests, statuses, ierr ) 
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How Important is Using 
Nonblocking Communication?  
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And For Blue Waters: Using 
Isend/Irecv 

• Halo exchange performance lower 
than ping-pong, but it could be 
worse …  
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Blue Waters:  
Using Send/Irecv 
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Persistent Operations 

•  Potential saving 
♦  Allocation of MPI_Request 
♦  Validating and storing arguments 
♦  Fewer interactions with “polling” engine 

•  Variations of example 
♦  sendinit, recvinit, startall, waitall 
♦  startall(recvs), sendrecv/barrier, startall(rsends), 

waitall 
•  Some vendor implementations are buggy 
•  Persistent operations may be slightly slower 

♦  if vendor optimizes for non-persistent operations 
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Summary 

• Many different ways to express the 
same communication pattern in 
MPI 
♦ This is a feature, not a flaw 

• Different systems will optimize 
different patterns 
♦ Try to design application code to 

allow different implementations 
♦ Here, used “Exchange” routine 



38 

Overdecomposition 

•  We’ve used a decomposition that assigns 
exactly one “patch” to an MPI process 

•  Any load imbalance between processes will 
result in idle (wasted) time on all but the 
slowest process. 

•  One option is to subdivide each patch into 
smaller patches, and redistribute patches from 
slower processes to faster ones. 

•  This approach is called overdecomposition 
because it decomposes the original domain 
into more parts than is required for distributed 
memory parallelism to the individual MPI 
processes 
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Discussion 

• Try the different MPI 
communication approaches on 
your system.  How do they 
perform? 

• Does the performance depend on 
whether the MPI processes are on 
the same chip? Node? 


