Lecture 22: MPI Basics

William Gropp
www.cs.illinois.edu/~wgropp

Message Passing Features

e Parallel programs consist of separate
processes, each with its own address space

¢ Programmer manages memory by placing data
in @ particular process

e Data sent explicitly between processes
¢ Programmer manages memory motion

e Collective operations
¢ On arbitrary set of processes

e Data distribution

¢ Also managed by programmer
e Message passing model doesn’t get in the way
e It doesn’t help either

> PARALLEL@ILLINOIS

1867

Types of
Parallel Computing Models

e Data Parallel - the same instructions are carried
out simultaneously on multiple data items (SIMD)

e Task Parallel - different instructions on different
data (MIMD)

e SPMD (single program, multiple data) not
synchronized at individual operation level

e SPMD is equivalent to MIMD since each MIMD

program can be made SPMD (similarly for SIMD,
but not in practical sense.)

Message passing (and MPI) is for MIMD/SPMD
][parallelism.

; PARALLEL@ILLINOIS

More on “Single Name
Space”

Process 0O Process 1
Address

Ry -
oo

.

Different Variables!

e integer A(10) e integer A(10)
do i=1,10
A(i) =i
enddo

[§ print*, A
. PARALLEL@ILLINOIS

The Message-Passing Model

e A process is (traditionally) a program counter
and address space.

e Processes may have multiple threads

(program counters and associated stacks)
sharing a single address space. MPI is for
communication among processes, which have
separate address spaces.

¢ MPI processes may have multiple threads
e Interprocess communication consists of
¢ Synchronization

¢ Movement of data from one process’ s address space
to another’s.

. PARALLEL@ILLINOIS

Programming With MPI

e MPI is a library

¢ All operations are performed with routine
calls

¢ Basic definitions in
e mpi.h for C
e MPI or MPI_FO8 module for Fortran
e mpif.h for Fortran 77 (discouraged)

e First Program:
¢ Create 4 processes in a simple MPI job
¢ Write out process number

][¢ Write out some variables (illustrate separate

Name space
pace) pARALLELGILLNOIS

Finding Out About the
Environment

e Two important questions that arise early in a
parallel program are:

¢ How many processes are participating in this
computation?

¢ Which one am I?

e MPI provides functions to answer these
questions:
¢ MPI_Comm_size reports the number of processes.

¢ MPI Comm_rank reports the rank, a number
between 0 and size-1, identifying the calling
][process

, PARALLEL@ILLINOIS

Simple Program in Fortran

program main

use mpi

integer 1err, rank, size, I, provided

real A(10)

call MPI_Init_thread(MPI THREAD SINGLE, &
provided, 1ierr)

call MPI Comm size(MPI COMM WORLD, size, ierr)

call MPI Comm rank(MPI COMM WORLD, rank, ierr)

do 1=1,10
A(1) = 1 * rank
enddo
print *, 'My rank ', rank, = of ', size

print *, 'Here are my values for A:’
print *, A
call MPI Finalize(ilerr)

][end

. PARALLEL@ILLINOIS

Simple Program in C

#include “mpi.h”
int main(int argc, char *argv([])
{
int rank, size, 1, provided
float A(10)
MPI Init thread(&argc, &argv, MPI THREAD SINGLE,
&provided) ;
MPI Comm size (MPI COMM WORLD, &size);
MPI Comm rank (MPI COMM WORLD, &rank);
for (1=0; 1i<10; i++)
A[1i] = 1 * rank;
printf (“My rank %d of %d\n”, rank, size);
printf (“Here are my values for A\n”);
for (i=0; i<10; i++) printf(“$f v, A[i]);
printf (“\n”) ;
MPI Finalize();

5 PARALLEL@ILLINOIS

Simple Program in C

#include “mpi.h”
int main(int argc, char *argv([])

{

int rank, size, 1, provided

float A(10)
MPI Init thread(&argc, &argv, MPI THREAD SINGLE,

&provided) ;

MPI Comm size (MPI_COMM WORLD, &size);
MPI Comm rank (MPI COMM WORLD, &rank);
for (1=0; 1i<10; i++)

A[1i] = 1 * rank;
printf (“My rank %d of %d\n”, rank, size);
printf (“Here are my values for A\n”);
for (i=0; i<10; i++) printf(“$f v, A[i]);
printf (“\n”) ;
MPI Finalize();

10 PARALLEL@ILLINOIS

Notes on Simple Program

e All MPI programs begin with
MPI_Init_thread and end with
MPI_Finalize

e MPI_COMM_WORLD is defined by mpi.h
(in C) or the MPI module (in Fortran) and
designates all processes in the MPI “job”

e Each statement executes independently in
each process
¢ including the print and printf statements

e I/O to standard output not part of MPI

¢ output order undefined (may be interleaved
@ by character, line, or blocks of characters)

11 PARALLEL@ILLINOIS

Wait! What about MPI_Init?

e In MPI-1, MPI programs started with MPI_Init
¢ MPI_Init(&argc, &argv) in C, MPI_INIT(ierr) in
Fortran
e MPI-2 adds MPI_Init_thread so that
programmer can request the level of thread
safety required for the program
¢ MPI_THREAD_SINGLE gives the same behavior as
MPI_Init
e New programs should use MPI_Init_thread,
and if more thread safety required, check on
that (the provide arg).
¢ Needed to use OpenMP with MPI

I

. PARALLEL@ILLINOIS

MPI Basic Send/Receive

e \We need to fill in the details in

Process 0O Process 1

Send (data) —/——

\

Receive(data)

e Things that need specifying:
¢ How will “data” be described?
¢ How will processes be identified?
¢ How will the receiver recognize/screen

messages?

][¢ What will it mean for these operations to
complete?

) PARALLEL@ILLINOIS

Some Basic Concepts

e Processes can be collected into groups.

e Fach message is sent in a context, and
must be received in the same context.

e A group and context together form a
communicator.

e A process is identified by its rank in the
group associated with a communicator.

e There is a default communicator whose
group contains all initial processes,
T called MPI_COMM WORLD.

14 PARALLEL@ILLINOIS

MPI Tags

e Messages are sent with an accompanying
user-defined integer tag, to assist the
receiving process in identifying the message.

e Messages can be screened at the receiving end
by specifying a specific tag, or not screened by
specifying MPI_ANY_TAG as the tag in a
receive.

e Some non-MPI message-passing systems have
called tags “message types”. MPI calls them
tags to avoid confusion with datatypes.

i5 PARALLEL@ILLINOIS

MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

e The message buffer is described by (start,
count, datatype).

e The target process is specified by dest, which is
the rank of the target process in the communicator
specified by comm.

e \When this function returns, the data has been

delivered to the system and the buffer can be
reused. The message may not have been received
by the target process.

6 PARALLEL@ILLINOIS

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag,
comm, status)

e Waits until a matching (on source and tag)
message is received from the system, and the
buffer can be used.

e source is rank in communicator specified by
comm, or MPI_ANY_SOURCE.

e status contains further information

e Receiving fewer than count occurrences of
datatype is OK, but receiving more is an error.

17 PARALLEL@ILLINOIS

Send-Receive Summary

e Send to matching

Receive
el
M;’I_Send(A, 10, MPI_DOUBLE, 1, MPI_Recv(B, 20, MPI_DOUBLE,
0, ..
e Datatype |

¢ Basic for heterogeneity
¢ Derived for non-contiguous

e Contexts
¢ Message safety for libraries
][e Buffering

¢ Robustness and correctness
18 PARALLEL@|LLINOIS

Retrieving Further
Information

« Status is a data structure allocated in the user’s program.
e InC:

int recvd tag, recvd from, recvd count;

MPI Status status;

MPI Recv(..., MPI_ANY SOURCE, MPI ANY TAG, ..., &status)
recvd tag = status.MPI_ TAG;

recvd from = status.MPI_SOURCE;

MPI Get count(&status, datatype, &recvd count);

e In Fortran:
integer recvd tag, recvd from, recvd count
integer status (MPI_STATUS SIZE)
call MPI_RECV(..., MPI_ANY SOURCE, MPI ANY TAG, .. status, ierr)
tag recvd = status(MPI_TAG)
recvd from = status (MPI_SOURCE)
call MPI_GET_COUNT (status, datatype, recvd count, ierr)

9 PARALLEL@ILLINOIS

Retrieving Further
Information

« Status is a data structure allocated in the user’s program.
e InC:

int recvd tag, recvd from, recvd count;

MPI Status status;

MPI Recv(..., MPI_ANY SOURCE, MPI ANY TAG, ..., &status)
recvd tag = status.MPI_ TAG;

recvd from = status.MPI_SOURCE;

MPI Get count(&status, datatype, &recvd count);

e In Fortran:
integer recvd tag, recvd from, recvd count
integer status (MPI_STATUS SIZE)
call MPI_RECV(..., MPI_ANY SOURCE, MPI ANY TAG, .. status, ierr)
tag recvd = status(MPI_TAG)
recvd from = status (MPI_SOURCE)
call MPI_GET_COUNT (status, datatype, recvd count, ierr)

20 PARALLEL@ILLINOIS

Adding Communication

e Test yourself here. Take our original program
and change it to do the following:

e Process 0 (i.e., the process with rank O from
MPI_Comm_rank) sets the elements of A[i] to
I, using a loop.

e Process 0 sends A to all other processes, one
process at a time, using MPI_Send. The other
processes receive A, using MPI_Recv.
¢ The MPI datatype for “float” is MPI_FLOAT
¢ You can ignore the status return in an MPI_Recv with

MPI_STATUS_IGNORE
][e The program prints rank, size, and the values

of A on each process
21 PARALLEL@ILLINOIS

1867

One Answer to the Question
in C (part 1)

#include “mpi.h”
int main(int argc, char *argv([])
{
int rank, size, 1, provided
float A(10)
MPI Init thread(&argc, &argv, MPI THREAD SINGLE,
&provided) ;
MPI Comm size (MPI_COMM WORLD, &size);
MPI Comm rank (MPI COMM WORLD, é&rank);

2 PARALLEL@ILLINOIS

1867

One Answer to the Question
in C (part 2)

if (rank == 0) {
for (i=0; i<10; i++)
A[1] = 1;

for (i=1, i<size; 1i++)
MPI Send (A, 10, MPI FLOAT, i, O,
MPI_COMM WORLD) ;

} else {

MPI Recv (A, 10, MPI FLOAT, o, O, MPI COMM WORLD,

MPI STATUS IGNORE) ;

}
printf (“My rank %d of %d\n”, rank, size);
printf (“Here are my values for A\n”);
for (i=0; i<10; i++) printf(“$f v, A[i]);
printf (“\n”) ;
MPI Finalize () ;

23 PARALLEL@ILLINOIS

Tags and Contexts

e In very early message passing systems,
separation of messages was accomplished by
use of tags, but

¢ this requires libraries to be aware of tags used by
other libraries.

¢ this can be defeated by use of “wild card” tags.
e Contexts are different from tags

¢ no wild cards allowed

¢ allocated dynamically by the system when a library
sets up a communicator for its own use.

e User-defined tags still provided in MPI for user
convenience in organizing application

I

» PARALLEL@ILLINOIS

Running MPI Programs

I

1867

The MPI Standard does not specify how to run an MPI
program, just as the Fortran standard does not specify
how to run a Fortran program.

In general, starting an MPI program is dependent on
the implementation of MPI you are using, and might
require various scripts, program arguments, and/or
environment variables.

mpiexec <args> is part of MPI, as a recommendation,
but not a requirement, for implementors.

For example, on Blue Waters, you’ll need to use aprun
and a batch script

¢ Or do what I do - write a script that acts like

mplexec . PARALLELGILLINOIS

Notes on C and Fortran

e C and Fortran bindings correspond closely
e In C:

¢ mpi.h must be #included
¢ MPI functions return error codes or MPI_SUCCESS

e In Fortran:

¢ The mpi module should be included (use MPI); even
better is the MPI_FO08 module

¢ Older programs may include the file mpif.h

¢ Almost all MPI calls are to subroutines, with a place for
the return code in the last argument.

e MPI-2 added and MPI-3 deleted a simple C++

][binding
% PARALLEL@ILLINOIS

Error Handling

e By default, an error causes all processes to
abort.

e The user can cause routines to return (with an
error code) instead.

e A user can also write and install custom error
handlers.

e Libraries can handle errors differently from
applications.

¢ MPI provides a way for each library to have its own
error handler without changing the default behavior
for other libraries or for the user’ s code

1867

' 27 PARALLEL@ILLINOIS

A Little More On Errors

e MPI has error codes and classes
¢ MPI routines return error codes
¢ Each code belongs to an error class

¢ MPI defines the error classes but not codes
e Except, all error classes are also error codes

e An MPI implementation can use error codes to
return instance-specific information on the
error
¢ MPICH does this, providing more detailed and

specific messages

e There are routines to convert an error code to
text and to find the class for a code.

I

1867

' 28 PARALLEL@ILLINOIS

Timing MPI Programs

e The elapsed (wall-clock) time between two points in an
MPI program can be computed using MPI_Wtime:
double tl1l, t2;
tl = MPI Wtime();

t2 = MPI Wtime() ;
printf(“time is %d\n”, t2 - tl1);
e The value returned by a single call to MPI_Wtime has
little value.

e The resolution of the timer is returned by MPI_Wtick

e Times in general are local, but an implementation might
offer synchronized times.

¢ For advanced users: see the MPI attribute
MPI_WTIME IS GLOBAL.

% PARALLEL@ILLINOIS

Q

uestions To Consider

e Find out how to compile and run MPI
programs on your systems.

e MPI (
instal
incluc

poth MPICH and Open MPI) can be
ed on almost any machine,
ing many laptops. See if you can

instal

on on your laptop.

e Add timing to the MPI programs in this
lecture. Is the time taken by the
communication operation what you
expect?

30 PARALLEL@ILLINOIS

