
Lecture 22: MPI Basics

William Gropp
www.cs.illinois.edu/~wgropp

2

Message Passing Features

•  Parallel programs consist of separate
processes, each with its own address space
♦ Programmer manages memory by placing data

in a particular process
•  Data sent explicitly between processes

♦ Programmer manages memory motion
•  Collective operations

♦ On arbitrary set of processes
•  Data distribution

♦ Also managed by programmer
• Message passing model doesn’t get in the way
•  It doesn’t help either

3

Types of
Parallel Computing Models

•  Data Parallel - the same instructions are carried
out simultaneously on multiple data items (SIMD)

•  Task Parallel - different instructions on different
data (MIMD)

•  SPMD (single program, multiple data) not
synchronized at individual operation level

•  SPMD is equivalent to MIMD since each MIMD
program can be made SPMD (similarly for SIMD,
but not in practical sense.)

Message passing (and MPI) is for MIMD/SPMD
parallelism.

4

More on “Single Name
Space”

•  integer A(10)

…
print *, A

A(10)

A(10)

•  integer A(10)
do i=1,10
 A(i) = i
enddo
...

Process 0 Process 1

Different Variables!

Address
Space

5

The Message-Passing Model

•  A process is (traditionally) a program counter
and address space.

•  Processes may have multiple threads
(program counters and associated stacks)
sharing a single address space. MPI is for
communication among processes, which have
separate address spaces.
♦  MPI processes may have multiple threads

•  Interprocess communication consists of
♦  Synchronization
♦  Movement of data from one process’s address space

to another’s.

6

Programming With MPI

•  MPI is a library
♦ All operations are performed with routine

calls
♦ Basic definitions in

• mpi.h for C
• MPI or MPI_F08 module for Fortran
• mpif.h for Fortran 77 (discouraged)

•  First Program:
♦ Create 4 processes in a simple MPI job
♦ Write out process number
♦ Write out some variables (illustrate separate

name space)

7

Finding Out About the
Environment

•  Two important questions that arise early in a
parallel program are:
♦ How many processes are participating in this

computation?
♦ Which one am I?

•  MPI provides functions to answer these
questions:
♦ MPI_Comm_size reports the number of processes.
♦ MPI_Comm_rank reports the rank, a number

between 0 and size-1, identifying the calling
process

8

Simple Program in Fortran

program main
use mpi
integer ierr, rank, size, I, provided
real A(10)
call MPI_Init_thread(MPI_THREAD_SINGLE, &

 provided, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
do i=1,10
 A(i) = i * rank
enddo
print *, ’My rank ’, rank, ’ of ’, size
print *, ’Here are my values for A:’
print *, A
call MPI_Finalize(ierr)
end

9

Simple Program in C

#include “mpi.h”
int main(int argc, char *argv[])
{
 int rank, size, i, provided
 float A(10)
 MPI_Init_thread(&argc, &argv, MPI_THREAD_SINGLE,

 &provided);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 for (i=0; i<10; i++)
 A[i] = i * rank;
 printf(“My rank %d of %d\n”, rank, size);
 printf(“Here are my values for A\n”);
 for (i=0; i<10; i++) printf(“%f “, A[i]);
 printf(“\n”);
 MPI_Finalize();
}

10

Simple Program in C

#include “mpi.h”
int main(int argc, char *argv[])
{
 int rank, size, i, provided
 float A(10)
 MPI_Init_thread(&argc, &argv, MPI_THREAD_SINGLE,

 &provided);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 for (i=0; i<10; i++)
 A[i] = i * rank;
 printf(“My rank %d of %d\n”, rank, size);
 printf(“Here are my values for A\n”);
 for (i=0; i<10; i++) printf(“%f “, A[i]);
 printf(“\n”);
 MPI_Finalize();
}

11

Notes on Simple Program

•  All MPI programs begin with
MPI_Init_thread and end with
MPI_Finalize

•  MPI_COMM_WORLD is defined by mpi.h
(in C) or the MPI module (in Fortran) and
designates all processes in the MPI “job”

•  Each statement executes independently in
each process
♦  including the print and printf statements

•  I/O to standard output not part of MPI
♦ output order undefined (may be interleaved

by character, line, or blocks of characters)

12

Wait! What about MPI_Init?

•  In MPI-1, MPI programs started with MPI_Init
♦  MPI_Init(&argc, &argv) in C, MPI_INIT(ierr) in

Fortran
•  MPI-2 adds MPI_Init_thread so that

programmer can request the level of thread
safety required for the program
♦  MPI_THREAD_SINGLE gives the same behavior as

MPI_Init
•  New programs should use MPI_Init_thread,

and if more thread safety required, check on
that (the provide arg).
♦  Needed to use OpenMP with MPI

13

MPI Basic Send/Receive

•  We need to fill in the details in

•  Things that need specifying:
♦ How will “data” be described?
♦ How will processes be identified?
♦ How will the receiver recognize/screen

messages?
♦ What will it mean for these operations to

complete?

Process 0 Process 1

Send(data)
Receive(data)

14

Some Basic Concepts

•  Processes can be collected into groups.
•  Each message is sent in a context, and

must be received in the same context.
•  A group and context together form a

communicator.
•  A process is identified by its rank in the

group associated with a communicator.
•  There is a default communicator whose

group contains all initial processes,
called MPI_COMM_WORLD.

15

MPI Tags

•  Messages are sent with an accompanying
user-defined integer tag, to assist the
receiving process in identifying the message.

•  Messages can be screened at the receiving end
by specifying a specific tag, or not screened by
specifying MPI_ANY_TAG as the tag in a
receive.

•  Some non-MPI message-passing systems have
called tags “message types”. MPI calls them
tags to avoid confusion with datatypes.

16

MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

•  The message buffer is described by (start,
count, datatype).

•  The target process is specified by dest, which is
the rank of the target process in the communicator
specified by comm.

•  When this function returns, the data has been
delivered to the system and the buffer can be
reused. The message may not have been received
by the target process.

17

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag,
 comm, status)

•  Waits until a matching (on source and tag)
message is received from the system, and the
buffer can be used.

•  source is rank in communicator specified by
comm, or MPI_ANY_SOURCE.

•  status contains further information
•  Receiving fewer than count occurrences of

datatype is OK, but receiving more is an error.

18

Send-Receive Summary

•  Send to matching
Receive

•  Datatype
♦  Basic for heterogeneity
♦  Derived for non-contiguous

•  Contexts
♦  Message safety for libraries

•  Buffering
♦  Robustness and correctness

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1,
…)

MPI_Recv(B, 20, MPI_DOUBLE,
0, …)

19

Retrieving Further
Information

•  Status is a data structure allocated in the user’s program.
•  In C:

int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)
recvd_tag = status.MPI_TAG;
recvd_from = status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &recvd_count);

•  In Fortran:
integer recvd_tag, recvd_from, recvd_count
integer status(MPI_STATUS_SIZE)
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)
tag_recvd = status(MPI_TAG)

recvd_from = status(MPI_SOURCE)
call MPI_GET_COUNT(status, datatype, recvd_count, ierr)

20

Retrieving Further
Information

•  Status is a data structure allocated in the user’s program.
•  In C:

int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)
recvd_tag = status.MPI_TAG;
recvd_from = status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &recvd_count);

•  In Fortran:
integer recvd_tag, recvd_from, recvd_count
integer status(MPI_STATUS_SIZE)
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)
tag_recvd = status(MPI_TAG)

recvd_from = status(MPI_SOURCE)
call MPI_GET_COUNT(status, datatype, recvd_count, ierr)

21

Adding Communication

•  Test yourself here. Take our original program
and change it to do the following:

•  Process 0 (i.e., the process with rank 0 from
MPI_Comm_rank) sets the elements of A[i] to
i, using a loop.

•  Process 0 sends A to all other processes, one
process at a time, using MPI_Send. The other
processes receive A, using MPI_Recv.
♦  The MPI datatype for “float” is MPI_FLOAT
♦  You can ignore the status return in an MPI_Recv with

MPI_STATUS_IGNORE
•  The program prints rank, size, and the values

of A on each process

22

One Answer to the Question
in C (part 1)

#include “mpi.h”
int main(int argc, char *argv[])
{
 int rank, size, i, provided
 float A(10)
 MPI_Init_thread(&argc, &argv, MPI_THREAD_SINGLE,

 &provided);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

23

One Answer to the Question
in C (part 2)

 if (rank == 0) {
 for (i=0; i<10; i++)
 A[i] = i;
 for (i=1, i<size; i++)
 MPI_Send(A, 10, MPI_FLOAT, i, 0,

 MPI_COMM_WORLD);
 } else {

 MPI_Recv(A, 10, MPI_FLOAT, 0, 0, MPI_COMM_WORLD,
 MPI_STATUS_IGNORE);

 }
 printf(“My rank %d of %d\n”, rank, size);
 printf(“Here are my values for A\n”);

 for (i=0; i<10; i++) printf(“%f “, A[i]);
 printf(“\n”);
 MPI_Finalize();
}

24

Tags and Contexts

•  In very early message passing systems,
separation of messages was accomplished by
use of tags, but
♦  this requires libraries to be aware of tags used by

other libraries.
♦  this can be defeated by use of “wild card” tags.

•  Contexts are different from tags
♦  no wild cards allowed
♦  allocated dynamically by the system when a library

sets up a communicator for its own use.
•  User-defined tags still provided in MPI for user

convenience in organizing application

25

Running MPI Programs

•  The MPI Standard does not specify how to run an MPI
program, just as the Fortran standard does not specify
how to run a Fortran program.

•  In general, starting an MPI program is dependent on
the implementation of MPI you are using, and might
require various scripts, program arguments, and/or
environment variables.

•  mpiexec <args> is part of MPI, as a recommendation,
but not a requirement, for implementors.

•  For example, on Blue Waters, you’ll need to use aprun
and a batch script
♦  Or do what I do – write a script that acts like

mpiexec

26

Notes on C and Fortran

•  C and Fortran bindings correspond closely
•  In C:

♦  mpi.h must be #included
♦  MPI functions return error codes or MPI_SUCCESS

•  In Fortran:
♦  The mpi module should be included (use MPI); even

better is the MPI_F08 module
♦  Older programs may include the file mpif.h
♦  Almost all MPI calls are to subroutines, with a place for

the return code in the last argument.

•  MPI-2 added and MPI-3 deleted a simple C++
binding

27

Error Handling

•  By default, an error causes all processes to
abort.

•  The user can cause routines to return (with an
error code) instead.

•  A user can also write and install custom error
handlers.

•  Libraries can handle errors differently from
applications.
♦  MPI provides a way for each library to have its own

error handler without changing the default behavior
for other libraries or for the user’s code

28

A Little More On Errors

•  MPI has error codes and classes
♦  MPI routines return error codes
♦  Each code belongs to an error class
♦  MPI defines the error classes but not codes

•  Except, all error classes are also error codes

•  An MPI implementation can use error codes to
return instance-specific information on the
error
♦  MPICH does this, providing more detailed and

specific messages
•  There are routines to convert an error code to

text and to find the class for a code.

29

Timing MPI Programs

•  The elapsed (wall-clock) time between two points in an
MPI program can be computed using MPI_Wtime:
 double t1, t2;
 t1 = MPI_Wtime();
 ...
 t2 = MPI_Wtime();
 printf(“time is %d\n”, t2 - t1);

•  The value returned by a single call to MPI_Wtime has
little value.

•  The resolution of the timer is returned by MPI_Wtick
•  Times in general are local, but an implementation might

offer synchronized times.
♦  For advanced users: see the MPI attribute

MPI_WTIME_IS_GLOBAL.

30

Questions To Consider

•  Find out how to compile and run MPI
programs on your systems.

•  MPI (both MPICH and Open MPI) can be
installed on almost any machine,
including many laptops. See if you can
install on on your laptop.

•  Add timing to the MPI programs in this
lecture. Is the time taken by the
communication operation what you
expect?

