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Message Passing Features  

•  Parallel programs consist of separate 
processes, each with its own address space 
♦ Programmer manages memory by placing data 

in a particular process 
•  Data sent explicitly between processes 

♦ Programmer manages memory motion 
•  Collective operations 

♦ On arbitrary set of processes 
•  Data distribution 

♦ Also managed by programmer 
• Message passing model doesn’t get in the way 
•  It doesn’t help either 
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Types of  
Parallel Computing Models 

•  Data Parallel - the same instructions are carried 
out simultaneously on multiple data items (SIMD) 

•  Task Parallel - different instructions on different 
data (MIMD) 

•  SPMD (single program, multiple data) not 
synchronized at individual operation level 

•  SPMD is equivalent to MIMD since each MIMD 
program can be made SPMD (similarly for SIMD, 
but not in practical sense.) 

Message passing (and MPI) is for MIMD/SPMD 
parallelism.   
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More on “Single Name 
Space” 

•  integer A(10) 
 
 
 
… 
print *, A 

A(10) 

A(10) 

•  integer A(10) 
do i=1,10 
  A(i) = i 
enddo 
... 

Process 0 Process 1 

Different Variables! 

Address 
Space 
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The Message-Passing Model 

•  A process is (traditionally) a program counter 
and address space. 

•  Processes may have multiple threads 
(program counters and associated stacks) 
sharing a single address space.  MPI is for 
communication among processes, which have 
separate address spaces. 
♦  MPI processes may have multiple threads 

•  Interprocess communication consists of  
♦  Synchronization 
♦  Movement of data from one process’s address space 

to another’s. 
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Programming With MPI 

•  MPI is a library 
♦ All operations are performed with routine 

calls 
♦ Basic definitions in  

• mpi.h for C 
• MPI or MPI_F08 module for Fortran  
• mpif.h for Fortran 77 (discouraged) 

•  First Program: 
♦ Create 4 processes in a simple MPI job 
♦ Write out process number  
♦ Write out some variables (illustrate separate 

name space) 
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Finding Out About the 
Environment 

•  Two important questions that arise early in a 
parallel program are: 
♦ How many processes are participating in this 

computation? 
♦ Which one am I? 

•  MPI provides functions to answer these 
questions: 
♦ MPI_Comm_size reports the number of processes. 
♦ MPI_Comm_rank reports the rank, a number 

between 0 and size-1, identifying the calling 
process 
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Simple Program in Fortran 

program main 
use mpi 
integer ierr, rank, size, I, provided 
real A(10) 
call MPI_Init_thread( MPI_THREAD_SINGLE, &  

    provided, ierr ) 
call MPI_Comm_size( MPI_COMM_WORLD, size, ierr ) 
call MPI_Comm_rank( MPI_COMM_WORLD, rank, ierr ) 
do i=1,10 
    A(i) = i * rank 
enddo 
print *, ’My rank ’, rank, ’ of ’, size 
print *, ’Here are my values for A:’ 
print *, A 
call MPI_Finalize( ierr ) 
end 
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Simple Program in C 

#include “mpi.h” 
int main(int argc, char *argv[]) 
{ 
  int rank, size, i, provided 
  float A(10) 
  MPI_Init_thread(&argc, &argv, MPI_THREAD_SINGLE, 

    &provided); 
  MPI_Comm_size(MPI_COMM_WORLD, &size); 
  MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
  for (i=0; i<10; i++)  
    A[i] = i * rank; 
  printf(“My rank %d of %d\n”, rank, size );  
  printf(“Here are my values for A\n”); 
  for (i=0; i<10; i++) printf(“%f “, A[i]); 
  printf(“\n”); 
  MPI_Finalize(); 
} 
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Simple Program in C 

#include “mpi.h” 
int main(int argc, char *argv[]) 
{ 
  int rank, size, i, provided 
  float A(10) 
  MPI_Init_thread(&argc, &argv, MPI_THREAD_SINGLE, 

    &provided); 
  MPI_Comm_size(MPI_COMM_WORLD, &size); 
  MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
  for (i=0; i<10; i++)  
    A[i] = i * rank; 
  printf(“My rank %d of %d\n”, rank, size );  
  printf(“Here are my values for A\n”); 
  for (i=0; i<10; i++) printf(“%f “, A[i]); 
  printf(“\n”); 
  MPI_Finalize(); 
} 
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Notes on Simple Program 

•  All MPI programs begin with 
MPI_Init_thread and end with 
MPI_Finalize 

•  MPI_COMM_WORLD is defined by mpi.h 
(in C) or the MPI module (in Fortran) and 
designates all processes in the MPI “job” 

•  Each statement executes independently in 
each process 
♦  including the print and printf statements 

•  I/O to standard output not part of MPI 
♦ output order undefined (may be interleaved 

by character, line, or blocks of characters) 
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Wait!  What about MPI_Init? 

•  In MPI-1, MPI programs started with MPI_Init 
♦  MPI_Init(&argc, &argv) in C, MPI_INIT(ierr) in 

Fortran 
•  MPI-2 adds MPI_Init_thread so that 

programmer can request the level of thread 
safety required for the program 
♦  MPI_THREAD_SINGLE gives the same behavior as 

MPI_Init 
•  New programs should use MPI_Init_thread, 

and if more thread safety required, check on 
that (the provide arg). 
♦  Needed to use OpenMP with MPI 
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MPI Basic Send/Receive 

•  We need to fill in the details in 

 

•  Things that need specifying: 
♦ How will “data” be described? 
♦ How will processes be identified? 
♦ How will the receiver recognize/screen 

messages? 
♦ What will it mean for these operations to 

complete? 

Process 0 Process 1 

Send(data) 
Receive(data) 
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Some Basic Concepts 

•  Processes can be collected into groups. 
•  Each message is sent in a context, and 

must be received in the same context. 
•  A group and context together form a 

communicator. 
•  A process is identified by its rank in the 

group associated with a communicator. 
•  There is a default communicator whose 

group contains all initial processes, 
called MPI_COMM_WORLD. 
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MPI Tags 

•  Messages are sent with an accompanying 
user-defined integer tag, to assist the 
receiving process in identifying the message. 

•  Messages can be screened at the receiving end 
by specifying a specific tag, or not screened by 
specifying MPI_ANY_TAG as the tag in a 
receive. 

•  Some non-MPI message-passing systems have 
called tags “message types”.  MPI calls them 
tags to avoid confusion with datatypes. 



16 

MPI Basic (Blocking) Send 

MPI_SEND (start, count, datatype, dest, tag, comm) 
 
•  The message buffer is described by (start, 
count, datatype). 

•  The target process is specified by dest, which is 
the rank of the target process in the communicator 
specified by comm. 

•  When this function returns, the data has been 
delivered to the system and the buffer can be 
reused.  The message may not have been received 
by the target process. 
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MPI Basic (Blocking) Receive 

MPI_RECV(start, count, datatype, source, tag, 
      comm, status) 

•  Waits until a matching (on source and tag) 
message is received from the system, and the 
buffer can be used. 

•  source is rank in communicator specified by 
comm, or MPI_ANY_SOURCE. 

•  status contains further information 
•  Receiving fewer than count occurrences of 

datatype is OK, but receiving more is an error. 
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Send-Receive Summary 

•  Send to matching 
Receive 

•  Datatype 
♦  Basic for heterogeneity 
♦  Derived for non-contiguous 

•  Contexts 
♦  Message safety for libraries 

•  Buffering 
♦  Robustness and correctness 

A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, 
…) 

MPI_Recv( B, 20, MPI_DOUBLE, 
0, … ) 
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Retrieving Further 
Information 

•  Status is a data structure allocated in the user’s program. 
•  In C: 

int recvd_tag, recvd_from, recvd_count; 
MPI_Status status; 
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status ) 
recvd_tag  = status.MPI_TAG; 
recvd_from = status.MPI_SOURCE; 
MPI_Get_count( &status, datatype, &recvd_count ); 

•  In Fortran: 
integer recvd_tag, recvd_from, recvd_count 
integer status(MPI_STATUS_SIZE) 
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr) 
tag_recvd  = status(MPI_TAG) 

recvd_from = status(MPI_SOURCE) 
call MPI_GET_COUNT(status, datatype, recvd_count, ierr) 
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Retrieving Further 
Information 

•  Status is a data structure allocated in the user’s program. 
•  In C: 

int recvd_tag, recvd_from, recvd_count; 
MPI_Status status; 
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status ) 
recvd_tag  = status.MPI_TAG; 
recvd_from = status.MPI_SOURCE; 
MPI_Get_count( &status, datatype, &recvd_count ); 

•  In Fortran: 
integer recvd_tag, recvd_from, recvd_count 
integer status(MPI_STATUS_SIZE) 
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr) 
tag_recvd  = status(MPI_TAG) 

recvd_from = status(MPI_SOURCE) 
call MPI_GET_COUNT(status, datatype, recvd_count, ierr) 
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Adding Communication 

•  Test yourself here.  Take our original program 
and change it to do the following: 

•  Process 0 (i.e., the process with rank 0 from 
MPI_Comm_rank) sets the elements of A[i] to 
i, using a loop. 

•  Process 0 sends A to all other processes, one 
process at a time, using MPI_Send.  The other 
processes receive A, using MPI_Recv. 
♦  The MPI datatype for “float” is MPI_FLOAT 
♦  You can ignore the status return in an MPI_Recv with 

MPI_STATUS_IGNORE 
•  The program prints rank, size, and the values 

of A on each process 
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One Answer to the Question 
in C (part 1) 

#include “mpi.h” 
int main(int argc, char *argv[]) 
{ 
  int rank, size, i, provided 
  float A(10) 
  MPI_Init_thread(&argc, &argv, MPI_THREAD_SINGLE, 

    &provided); 
  MPI_Comm_size(MPI_COMM_WORLD, &size); 
  MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
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One Answer to the Question 
in C (part 2) 

 if (rank == 0) { 
    for (i=0; i<10; i++)  
      A[i] = i; 
    for (i=1, i<size; i++) 
        MPI_Send(A, 10, MPI_FLOAT, i, 0, 

    MPI_COMM_WORLD); 
 } else { 

    MPI_Recv(A, 10, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, 
   MPI_STATUS_IGNORE); 

 } 
 printf(“My rank %d of %d\n”, rank, size );  
 printf(“Here are my values for A\n”); 

 for (i=0; i<10; i++) printf(“%f “, A[i]); 
 printf(“\n”); 
 MPI_Finalize(); 
} 
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Tags and Contexts 

•  In very early message passing systems, 
separation of messages was accomplished by 
use of tags, but 
♦  this requires libraries to be aware of tags used by 

other libraries. 
♦  this can be defeated by use of “wild card” tags. 

•  Contexts are different from tags 
♦  no wild cards allowed 
♦  allocated dynamically by the system when a library 

sets up a communicator for its own use. 
•  User-defined tags still provided in MPI for user 

convenience in organizing application 



25 

Running MPI Programs 

•  The MPI Standard does not specify how to run an MPI 
program, just as the Fortran standard does not specify 
how to run a Fortran program. 

•  In general, starting an MPI program is dependent on 
the implementation of MPI you are using, and might 
require various scripts, program arguments, and/or 
environment variables. 

•  mpiexec <args>  is part of MPI, as a recommendation, 
but not a requirement, for implementors. 

•  For example, on Blue Waters, you’ll need to use aprun 
and a batch script 
♦  Or do what I do – write a script that acts like 

mpiexec 
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Notes on C and Fortran 

•  C and Fortran bindings correspond closely 
•  In C: 

♦  mpi.h must be #included 
♦  MPI functions return error codes or MPI_SUCCESS 

•  In Fortran: 
♦  The mpi module should be included (use MPI); even 

better is the MPI_F08 module 
♦  Older programs may include the file mpif.h 
♦  Almost all MPI calls are to subroutines, with a place for 

the return code in the last argument. 

•  MPI-2 added and MPI-3 deleted a simple C++ 
binding 
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Error Handling 

•  By default, an error causes all processes to 
abort.  

•  The user can cause routines to return (with an 
error code) instead. 

•  A user can also write and install custom error 
handlers. 

•  Libraries can handle errors differently from 
applications.  
♦  MPI provides a way for each library to have its own 

error handler without changing the default behavior 
for other libraries or for the user’s code 
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A Little More On Errors 

•  MPI has error codes and classes 
♦  MPI routines return error codes 
♦  Each code belongs to an error class 
♦  MPI defines the error classes but not codes 

•  Except, all error classes are also error codes 

•  An MPI implementation can use error codes to 
return instance-specific information on the 
error 
♦  MPICH does this, providing more detailed and 

specific messages 
•  There are routines to convert an error code to 

text and to find the class for a code.  
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Timing MPI Programs 

•  The elapsed (wall-clock) time between two points in an 
MPI program can be computed using MPI_Wtime: 
      double t1, t2; 
   t1 = MPI_Wtime(); 
   ... 
   t2 = MPI_Wtime(); 
   printf( “time is %d\n”, t2 - t1 ); 

•  The value returned by a single call to MPI_Wtime has 
little value. 

•  The resolution of the timer is returned by MPI_Wtick 
•  Times in general are local, but an implementation might 

offer synchronized times.   
♦  For advanced users: see the MPI attribute 

MPI_WTIME_IS_GLOBAL. 
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Questions To Consider 

•  Find out how to compile and run MPI 
programs on your systems. 

•  MPI (both MPICH and Open MPI) can be 
installed on almost any machine, 
including many laptops.  See if you can 
install on on your laptop. 

•  Add timing to the MPI programs in this 
lecture.  Is the time taken by the 
communication operation what you 
expect? 


